Introductory Business Statistics 2e

Introductory Business Statistics 2e

Author: Alexander Holmes

Publisher:

Published: 2023-12-13

Total Pages: 1801

ISBN-13:

DOWNLOAD EBOOK

Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.


Probability and Bayesian Modeling

Probability and Bayesian Modeling

Author: Jim Albert

Publisher: CRC Press

Published: 2019-12-06

Total Pages: 553

ISBN-13: 1351030132

DOWNLOAD EBOOK

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.


Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems

Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems

Author: Jerome Morio

Publisher: Woodhead Publishing

Published: 2015-11-16

Total Pages: 217

ISBN-13: 0081001118

DOWNLOAD EBOOK

Rare event probability (10-4 and less) estimation has become a large area of research in the reliability engineering and system safety domains. A significant number of methods have been proposed to reduce the computation burden for the estimation of rare events from advanced sampling approaches to extreme value theory. However, it is often difficult in practice to determine which algorithm is the most adapted to a given problem.Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach provides a broad up-to-date view of the current available techniques to estimate rare event probabilities described with a unified notation, a mathematical pseudocode to ease their potential implementation and finally a large spectrum of simulation results on academic and realistic use cases. Provides a broad overview of the practical approach of rare event methods. Includes algorithms that are applied to aerospace benchmark test cases Offers insight into practical tuning issues


Statistical Methods in the Atmospheric Sciences

Statistical Methods in the Atmospheric Sciences

Author: Daniel S. Wilks

Publisher: Academic Press

Published: 2011-07-04

Total Pages: 697

ISBN-13: 0123850231

DOWNLOAD EBOOK

Statistical Methods in the Atmospheric Sciences, Third Edition, explains the latest statistical methods used to describe, analyze, test, and forecast atmospheric data. This revised and expanded text is intended to help students understand and communicate what their data sets have to say, or to make sense of the scientific literature in meteorology, climatology, and related disciplines. In this new edition, what was a single chapter on multivariate statistics has been expanded to a full six chapters on this important topic. Other chapters have also been revised and cover exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, and time series analysis. There is now an expanded treatment of resampling tests and key analysis techniques, an updated discussion on ensemble forecasting, and a detailed chapter on forecast verification. In addition, the book includes new sections on maximum likelihood and on statistical simulation and contains current references to original research. Students will benefit from pedagogical features including worked examples, end-of-chapter exercises with separate solutions, and numerous illustrations and equations. This book will be of interest to researchers and students in the atmospheric sciences, including meteorology, climatology, and other geophysical disciplines. - Accessible presentation and explanation of techniques for atmospheric data summarization, analysis, testing and forecasting - Many worked examples - End-of-chapter exercises, with answers provided


An Automated Low Cloud Prediction System

An Automated Low Cloud Prediction System

Author: Edward B. Geisler

Publisher:

Published: 1981

Total Pages: 44

ISBN-13:

DOWNLOAD EBOOK

At the Air Force Geophysics Laboratory (AFGL) Weather Test Facility (WTF) at Otis AFB, MA, a network of cloud base height, visibility, and wind measuring instruments were used to explore techniques for the short range prediction of low cloud ceiling. AFGL developed this system in response to the USAF Air Weather Service's requirements to modernize its basic weather support capabilities. This system allowed AFGL to evaluate the ability of statistical forecasting techniques to provide decision assistance significantly improved over the decision assistance currently provided by climatology and persistence. The approach relies upon the use of a hierarchical clustering algorithm to transform the raw cloud base height data into an automated low cloud observation. Four prediction techniques (Regression Estimation of Event Probabilities, Equivalent Markov, climatology, and persistence) yielding probability estimates of low cloud ceiling were evaluated and comparisons made to determine their respective accuracy and reliability. In addition, thresholding techniques were used to convert probability forecasts (unit bias, maximum probability, iterative, and persistence). Analysis of the data collected at the AFGL WTF demonstrates the accuracy and reliability of the automated low cloud prediction system. Regression estimation of event probabilities provided accurate, reliable, high resolution probability forecasts with results superior to climatology, persistence, and Equivalent Markov.


Interpreting Probability Models

Interpreting Probability Models

Author: Tim Futing Liao

Publisher: SAGE

Published: 1994-06-30

Total Pages: 100

ISBN-13: 9780803949997

DOWNLOAD EBOOK

What is the probability that something will occur, and how is that probability altered by a change in an independent variable? To answer these questions, Tim Futing Liao introduces a systematic way of interpreting commonly used probability models. Since much of what social scientists study is measured in noncontinuous ways and, therefore, cannot be analyzed using a classical regression model, it becomes necessary to model the likelihood that an event will occur. This book explores these models first by reviewing each probability model and then by presenting a systematic way for interpreting the results from each.


Advanced Statistics for Physical and Occupational Therapy

Advanced Statistics for Physical and Occupational Therapy

Author: Thomas Gus Almonroeder

Publisher: Taylor & Francis

Published: 2022-04-05

Total Pages: 263

ISBN-13: 1000555569

DOWNLOAD EBOOK

Advanced Statistics for Physical and Occupational Therapy explains the basis for statistical analyses that are commonly used to answer clinical research questions related to physical and occupational therapy. This textbook provides a resource to help students and faculty in physical and occupational therapy graduate programs understand the basis for common statistical analyses and be able to apply these techniques in their own research. This textbook provides readers with the basis for common statistical analyses, including t-tests, analysis of variance, regression, and nonparametric tests. Each chapter includes step-by-step tutorials with corresponding example data sets explaining how to conduct these statistical analyses using Statistical Package for the Social Sciences (SPSS) software and the Excel Analysis ToolPak, as well as how to identify and interpret relevant output and report results. Advanced Statistics for Physical and Occupational Therapy is key reading for students in physical therapy, occupational therapy, sport performance, and sport rehabilitation graduate programs as well as students in athletic training courses, applied statistics in sport, and research methods in sport modules. This new text will also be of interest to practicing clinicians who hope to better understand the research they are reading and/or are interested in starting to conduct their own clinical research.