Evaluation of SWAT Model Applicability in a First-order Agricultural Watershed in Southern Ontario

Evaluation of SWAT Model Applicability in a First-order Agricultural Watershed in Southern Ontario

Author: Ibrahim O. Rashid

Publisher:

Published: 2013

Total Pages: 560

ISBN-13:

DOWNLOAD EBOOK

Excess nitrate and phosphorus export to surface water bodies may yield negative environmental impacts, including the eutrophication of downstream areas. To address this issue, a modeling technique was deployed to quantify and assess these processes under various seasonal scenarios at the Strawberry Creek Watershed. The Soil and Water Assessment Tool (SWAT) model was modified (SWAT tile) and parameters defined to simulate the effects of tile drainage on flow and nitrate (NO3−) export from small watersheds during the four seasons characteristic of southern Ontario. This study compares differences and similarities between observed watershed processes against model output by: (1) utilizing the SWATtile model for comparison of simulated to measured discharge from a watershed, and a tiled field, from several years of data, (2) utilizing the SWATtile model for comparison of simulated to measured NO3− from a watershed and tiled field, and (3) several scenarios are presented on how modifications to tile spacing (density) can be manipulated to achieve a balance between improving soil drainage while minimizing NO3− export. The effects of tile density changes were evaluated to determine the impact of moisture availability (for tile flow) as precipitation cycled from rain to snow and back to rain. In the first part of this study, comparison of detailed simulations of seasonal flow patterns from both the gauged watershed and a gauged tiled field for winter 2007 to winter 2008, reveals similarities and contrasts in flow patterns for daily time scales. Due to its distributed nature, the SWAT model is subdivided into fundamental units of analysis designated as Hydrologic Response Units (HRUs). Each HRU consists of a unique soil and landuse type and is capable of autonomous analysis and result generation. The gauged subwatershed area drained by the Below Middle Road (BMR) tile has been continuously monitored for more than six years. This subwatershed was defined in the SWAT model setup as an independent HRU so that results generated from simulations can be directly compared to measured values from the same area. In terms of landuse, soil type and tile spacing, the BMR - HRU is representative of other tiled fields in the watershed. Simulated stream and tile flow for each season were comparable to that of the observed. Linear trends between measured main channel flow and that of measured tile flow was statistically significant. However, trend agreement between simulated main channel discharge and BMR tile was not statistically significant, although it demonstrated a general linear pattern. For the second part of the study, comparison of observed/measured watershed NO3− concentration against results generated by SWATtile model were quantified across all seasons with the contrast being greatest for the spring season. The general trend in modeled NO3− is for more of it to be exported during low flows. NO3− then increases with volume of flow. The tile outlet yields a higher NO3− load per unit area, as this contribution originates from a much smaller area (0.43 km2) compared to main stream outlet with contribution from the entire watershed which is a much large area (2.86 km2). For both the first and second scenarios, the tile drainage component was also disabled to enable observation of dominance of overland flow as a result of an elevated water table. Consequently, there was an observable reduction in crop NO3- uptake which is largely due to an increased rate of denitrification under anaerobic conditions. The third part of the study introduces variability in density between feeder tiles and thus altered the drainage intensity. The drainage intensity is the rate at which water is removed from a field and is thus proportional to tile density. As the intensity is increased, drainage and NO3− export also increases proportionally. On the other hand, as the lateral distance is increased above 50 ft. (15.24 m), tile drainage and NO3− export from the field are reduced. Crop NO3− uptake was also reduced (decreased productivity) with an increase in tile density (from 50ft. to 35ft.). This was also characterised by increased NO3− export. The anoxic conditions might also favour denitrification which may lead to further NO3− loss. For the watershed simulation, although decreasing tile density helped reduce NO3− mass export (density reduced from 50ft [90 kg/ha] to 65ft [82 kg/ha]), it was still not enough to attain the required drinking water standard of 10 mg/L (and the limit of 12.8 mg/L for aquatic species). However, when the tile density was reduced to 85ft. (30m), the concentration of NO3− decreased to 25 kg/ha.


Watershed Models

Watershed Models

Author: Vijay P. Singh

Publisher: CRC Press

Published: 2010-09-28

Total Pages: 678

ISBN-13: 1420037439

DOWNLOAD EBOOK

Watershed modeling is at the heart of modern hydrology, supplying rich information that is vital to addressing resource planning, environmental, and social problems. Even in light of this important role, many books relegate the subject to a single chapter while books devoted to modeling focus only on a specific area of application. Recognizing the


Modeling Impacts of Climate Change and Agricultural Management on Watershed Outputs in Midwestern USA

Modeling Impacts of Climate Change and Agricultural Management on Watershed Outputs in Midwestern USA

Author: Awoke Dagnew Teshager

Publisher:

Published: 2016

Total Pages: 246

ISBN-13:

DOWNLOAD EBOOK

Applications of the SWAT model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the tool. In a standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover (LULC), soil, and slope, but located in different places within a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as LULC, soil, crop rotation and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for the Raccoon River watershed in Iowa for 2002 to 2010 and the Big Creek River watershed in Illinois for 2000 to 2003. SWAT was able to replicate annual, monthly and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner. The calibrated and validated SWAT model was then used to assess agricultural scenario and climate change impacts on watershed water quantity, quality, and crop yields. Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental, and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists modeling the combined impacts of agricultural scenarios and climate change on crop yields and watershed hydrology. Here, SWAT, was used to model the combined impacts of five agricultural scenarios and three climate scenarios downscaled using eight climate models. These scenarios were implemented in a well calibrated SWAT model for the Raccoon River watershed (RRW), IA. We run the scenarios for the historical baseline, early-century, mid-century, and late-century periods. Results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid and late 21st century. Finally, various agricultural best management practice (BMP) scenarios were evaluated for their efficiency in alleviating watershed water quality problems. The vast majority of the literature on efficiency assessment of BMPs in alleviating water quality problems base their scenarios analysis on identifying subbasin level simulation results. In the this study, we used spatially explicit HRUs, defined using ArcGIS-based pre-processing methodology, to identify Nitrate (NO3) and Total Suspended Solids (TSS) hotspots at the HRU/field level, and evaluate the efficiency of selected BMPs in a large watershed, RRW, using the SWAT model. Accordingly, analysis of fourteen management scenarios were performed based on systematic combinations of five agricultural BMPs (fertilizer/manure management, changing cropland to perennial grass, vegetative filter strips, cover crops and shallower tile drainage systems) aimed to reduce NO3 and TSS yields from targeted hotspot areas in the watershed at field level. Moreover, implications of climate change on management practices, and impacts of management practices on water availability and crop yield and total production were assessed. Results indicated that either implementation of multiple BMPs or conversion of an extensive area into perennial grass may be required to sufficiently reduce nitrate loads to meet the drinking water standard. Moreover, climate change may undermine the effectiveness of management practices, especially late in the 21 st century. The targeted approach used in this study resulted in slight decreases in watershed average crop yields, hence the reduction in total crop production is mainly due to conversion of croplands to perennial grass.


Using SWAT (Soil Water and Assessment Tool) to Evaluate Streamflow Hydrology in a Small Mountain Watershed in the Sierra Nevada, Ca

Using SWAT (Soil Water and Assessment Tool) to Evaluate Streamflow Hydrology in a Small Mountain Watershed in the Sierra Nevada, Ca

Author: David Jonathan Bailey

Publisher:

Published: 2015

Total Pages: 58

ISBN-13:

DOWNLOAD EBOOK

Hydrological models have been increasingly used for the effect of land cover change and forest management operations on hydrological processes. In the Sierra Nevada, where timber harvest and prescribed fire are commonly employed for forest management, hydrological models have rarely been used, especially in small watersheds. In this research, the SWAT model (Soil Water and Assessment Tool) was used to simulate streamflow on a daily time-step in P301, a small headwater mountain watershed located in the southern Sierra Nevada. The watershed is 1 km2, where about 72% of the land is covered by a dense mixed-conifer forest. SWAT performs satisfactorily with a coefficient of determination (R2) of 0.59 and a Nash-Sutcliffe efficiency value (NSE) of 0.59. This is important to know given the complexity arising from model uncertainty and the intricacies of Sierra Nevada hydrology. Although SWAT performed "satisfactory", the model still missed two key hydrological processes: the timing of snowmelt and isolated peak flow events. In addition, simulating streamflow on the daily time-step is good for understanding watershed processing and functioning but is not as useful for forest and land management. SWAT will need further model adjustments as well as monthly and yearly water yield estimates in order to be considered for the evaluation of forest management operations in P301.


Modeling Water Quantity and Quality in an Agricultural Watershed in the Midwestern US Using SWAT

Modeling Water Quantity and Quality in an Agricultural Watershed in the Midwestern US Using SWAT

Author: Sudipta Kumar Mishra

Publisher:

Published: 2013

Total Pages: 185

ISBN-13:

DOWNLOAD EBOOK

Iowa finds itself positioned at the epicenter of agricultural pollution due to the intensity of crop and livestock production, fertilizer inputs, altered hydrological landscapes, and other factors. To address such issues, the overarching objective of this research work was to understand the implications of an expansion in bioenergy crops as mandated by the Environmental Protection Agency's Renewable Fuel Standard 2 (through 2022) on hydrology and water quality in an agricultural watershed. In this research, the Soil Water Assessment Tool (SWAT) model was calibrated and validated using field data obtained through water quality sensors and grab samples, and then model parameters were estimated for sensitivity and uncertainty analysis. Scenarios were generated based on Renewable Fuel Standards and evaluated for understanding the impacts of expanding bioenergy production on hydrology and water quality. Also output from an agent-based model was incorporated into SWAT for simulating watershed responses to different crop market scenarios.


Evaluation of Conservation Practices Effect on Water Quality Using the SWAT Model

Evaluation of Conservation Practices Effect on Water Quality Using the SWAT Model

Author: Vivek Venishetty

Publisher:

Published: 2023

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

The deterioration of water quality due to human-driven alternations has an adverse effect on the environment. More than 50% of surveyed surface water bodies in the United States (US) are classified as impaired waters as per the Clean Water Act. The pollutants affecting the water quality in the US are classified as point and non-point sources. Pollutant mitigation strategies such as the selective implementation of best management practices (BMPs) based on the severity of the pollution could improve water quality by reducing the amounts of pollutants. Quantifying the efficiency of a specific management practice can be difficult for large watersheds. Complex hydrologic models are used to assess water quality and quantity at watershed scales. This study used a Soil and Water Assessment Tool (SWAT) that can simulate a longer time series for hydrologic and water quality assessments in the Yazoo River Watershed (YRW). This research aims to estimate streamflow, sediment, and nutrient load reductions by implementing various BMPs in the watershed. BMPs such as vegetative filter strips (VFS), riparian buffers, and cover crops were applied in this study. Results from these scenarios indicated that the combination of VFS and riparian buffers at the watershed scale had the highest reduction in sediment and nutrient loads. Correspondingly, a comparative analysis of BMP implementation at the field and watershed scale showed the variability in the reduction of streamflow, sediment, and nutrient loads. The results indicated that combining VFS and CC at the field scale watershed had a greater nutrient reduction than at the watershed scale. Likewise, this study investigated the soil-specific sediment load assessments for predominant soils in the YRW, which resulted in soil types of Alligator, Sharkey, and Memphis soils being highly erodible from the agricultural-dominant region. This study also included the effect of historical land use and land-cover (LULC) change on water quality. The analysis revealed that there was a significant decrease in pastureland and a simultaneous increase in forest and wetlands, which showed a decreasing trend in hydrologic and water quality outputs. Results from this study could be beneficial in decision-making for prescribing appropriate conservation practices


Introduction to Genetic Algorithms

Introduction to Genetic Algorithms

Author: S.N. Sivanandam

Publisher: Springer Science & Business Media

Published: 2007-10-24

Total Pages: 453

ISBN-13: 3540731903

DOWNLOAD EBOOK

This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields.


Evaporation, Evapotranspiration, and Irrigation Water Requirements

Evaporation, Evapotranspiration, and Irrigation Water Requirements

Author: American Society of Civil Engineers. Task Committee on Revision of Manual 70

Publisher: ASCE Press

Published: 2016

Total Pages: 0

ISBN-13: 9780784414057

DOWNLOAD EBOOK

MOP 70 is a comprehensive reference to estimating the water quantities needed for irrigation of crops projects based upon the physics of evaporation and evapotranspiration (ET).


Soil erosion: the greatest challenge for sustainable soil management

Soil erosion: the greatest challenge for sustainable soil management

Author: Food and Agriculture Organization of the United Nations

Publisher: Food & Agriculture Org.

Published: 2019-05-16

Total Pages: 104

ISBN-13: 9251314268

DOWNLOAD EBOOK

Despite almost a century of research and extension efforts, soil erosion by water, wind and tillage continues to be the greatest threat to soil health and soil ecosystem services in many regions of the world. Our understanding of the physical processes of erosion and the controls on those processes has been firmly established. Nevertheless, some elements remain controversial. It is often these controversial questions that hamper efforts to implement sound erosion control measures in many areas of the world. This book, released in the framework of the Global Symposium on Soil Erosion (15-17 May 2019) reviews the state-of-the-art information related to all topics related to soil erosion.