Settlement of Bridge Approaches

Settlement of Bridge Approaches

Author: J.-L. Briaud

Publisher:

Published: 1997

Total Pages: 88

ISBN-13:

DOWNLOAD EBOOK

This synthesis will be of interest to state Departments of Transportation (DOTs) geotechnical, structural, roadway design, construction, and maintenance engineers; DOT research staff; and personnel in local transportation agencies. This synthesis describes the current state of the practice for the design, construction, and maintenance of bridge approaches to reduce, eliminate, or compensate for settlement at the bridge/abutment/embankment interface or the bump at the end of the bridge. It discusses the geotechnical and structural engineering design and procedural factors to reduce the bump at the end of the bridge, and includes numerous illustrations. This report of the Transportation Research Board presents data obtained from a review of the literature and a survey of the state DOTs. It is a supplemental update to Synthesis of Highway Practice 159: Design and Construction of Bridge Approaches (1990). The synthesis identifies and describes techniques that have been used to alleviate the problem of the bump at the end of the bridge including the location and cause of settlement and methods used to reduce settlement. In addition, the types of interaction between various divisions of the DOTs in the design, construction, and maintenance of bridge approaches are addressed.


Bridge Engineering Handbook

Bridge Engineering Handbook

Author: Wai-Fah Chen

Publisher: CRC Press

Published: 2019-09-11

Total Pages: 690

ISBN-13: 1000005925

DOWNLOAD EBOOK

First Published in 1999: The Bridge Engineering Handbook is a unique, comprehensive, and state-of-the-art reference work and resource book covering the major areas of bridge engineering with the theme "bridge to the 21st century."


Design and Construction of Bridge Approaches

Design and Construction of Bridge Approaches

Author: Harvey E. Wahls

Publisher: Transportation Research Board

Published: 1990

Total Pages: 56

ISBN-13: 9780309049054

DOWNLOAD EBOOK

Includes case histories of the Dumbarton Bridge (San Francisco Bay, Calif.), the Rainier Avenue Embankment (Seattle, Wash.) and the Gallows Road Grade Separation (Fairfax, Va.)


Seismic Design and Retrofit of Bridges

Seismic Design and Retrofit of Bridges

Author: M. J. N. Priestley

Publisher: John Wiley & Sons

Published: 1996-04-12

Total Pages: 704

ISBN-13: 9780471579984

DOWNLOAD EBOOK

Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges


Bridge Deck Analysis

Bridge Deck Analysis

Author: Eugene J. Obrien

Publisher: CRC Press

Published: 2014-10-06

Total Pages: 338

ISBN-13: 148222724X

DOWNLOAD EBOOK

Captures Current Developments in Bridge Design and MaintenanceRecent research in bridge design and maintenance has focused on the serviceability problems of older bridges with aging joints. The favored solution of integral construction and design has produced bridges with fewer joints and bearings that require less maintenance and deliver increased


Concrete Pressure Pipe, 3rd Ed.

Concrete Pressure Pipe, 3rd Ed.

Author: American Water Works Association

Publisher: American Water Works Association

Published: 2008

Total Pages: 286

ISBN-13: 1583215492

DOWNLOAD EBOOK

This comprehensive manual of water supply practices explains the design, selection, specification, installation, transportation, and pressure testing of concrete pressure pipes in potable water service.


AASHTO Guide Specifications for LRFD Seismic Bridge Design

AASHTO Guide Specifications for LRFD Seismic Bridge Design

Author:

Publisher: AASHTO

Published: 2011

Total Pages: 271

ISBN-13: 156051521X

DOWNLOAD EBOOK

This work offers guidance on bridge design for extreme events induced by human beings. This document provides the designer with information on the response of concrete bridge columns subjected to blast loads as well as blast-resistant design and detailing guidelines and analytical models of blast load distribution. The content of this guideline should be considered in situations where resisting blast loads is deemed warranted by the owner or designer.


Integral bridges

Integral bridges

Author: George England

Publisher: Thomas Telford Limited

Published: 2000-02-18

Total Pages: 0

ISBN-13: 9780727735416

DOWNLOAD EBOOK

Integral Bridges was commissioned by the Highways Agency to produce guidance for bridge designers by addressing the thermally induced soil/structure interaction problem created by environmental changes of temperature and the associated cyclical displacements imposed on the granular backfill to the bridge abutments.