Ultrafast Dynamics of Quantum Systems

Ultrafast Dynamics of Quantum Systems

Author: Baldassare di Bartolo

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 721

ISBN-13: 0306470802

DOWNLOAD EBOOK

Based on a NATO Advanced Summer Institute, this volume discusses physical models, mathematical formalisms, experimental techniques, and applications for ultrafast dynamics of quantum systems. These systems are used in laser optics, spectroscopy, and utilize monochromaticity, spectral brightness, coherence, power density, and tunability of laser sources.


Insulating Materials for Optoelectronics

Insulating Materials for Optoelectronics

Author: F. Agull¢-L¢pez

Publisher: World Scientific

Published: 1995

Total Pages: 465

ISBN-13: 9810222300

DOWNLOAD EBOOK

This review volume presents new developments in the preparation, physical characterization and applications of insulating materials for Optoelectronics. Insulators occupy a leading position as laser and optical amplifier hosts, electrooptic and acoustooptic modulators, frequency doublers and optical parametric oscillators, photorefractive devices and radiator detectors. These applications rely heavily on the development of advanced techniques for the preparation of both bulk and waveguide structures, the adequate knowledge of the microscopic behaviour defects, impurities and a thorough understanding of their response to electromagnetic fields. All these topics relating basic physicochemical aspects and applied performance are authoritatively discussed in the book.


Plastic Deformation of Ceramics

Plastic Deformation of Ceramics

Author: R.C. Bradt

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 661

ISBN-13: 1489914412

DOWNLOAD EBOOK

This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.


Phosphate Phosphors for Solid-State Lighting

Phosphate Phosphors for Solid-State Lighting

Author: Kartik N. Shinde

Publisher: Springer Science & Business Media

Published: 2012-12-15

Total Pages: 275

ISBN-13: 3642343120

DOWNLOAD EBOOK

The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.


Optical Properties of Phosphate and Pyrophosphate Compounds

Optical Properties of Phosphate and Pyrophosphate Compounds

Author: Ritesh L. Kohale

Publisher: Woodhead Publishing

Published: 2020-12-05

Total Pages: 274

ISBN-13: 0128230649

DOWNLOAD EBOOK

An in-depth look at the luminescence of phosphor materials for applications in optical devices, sensors, and medical technologies. Optical Properties of Phosphate and Pyrophosphate Compounds gives a broad introduction to pyrophosphates and phosphate-based phosphors, including their fundamental properties, material composition, synthesis methods, characterization techniques, and applications in optical devices and technologies. The text describes the development of the materials' shape and size, as well as crucial characterization techniques for key applications. Additionally, it includes essential information about recently used single and mixed cations pyrophosphate and phosphate compounds. This book is suitable for researchers working in materials science, engineering, materials chemistry, and physics. It may also be helpful to engineers and chemists working in R&D for solid state lighting. - Includes comprehensive review of materials synthesis and characterization techniques for pyrophosphate and phosphate-based phosphor materials for key applications - Discusses the fundamentals of luminescence and the optical properties of pyrophosphate and phosphate-based phosphor material - Addresses key applications in optical devices, sensors, and medical technologies