Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.
Asymptotic analysis of stochastic stock price models is the central topic of the present volume. Special examples of such models are stochastic volatility models, that have been developed as an answer to certain imperfections in a celebrated Black-Scholes model of option pricing. In a stock price model with stochastic volatility, the random behavior of the volatility is described by a stochastic process. For instance, in the Hull-White model the volatility process is a geometric Brownian motion, the Stein-Stein model uses an Ornstein-Uhlenbeck process as the stochastic volatility, and in the Heston model a Cox-Ingersoll-Ross process governs the behavior of the volatility. One of the author's main goals is to provide sharp asymptotic formulas with error estimates for distribution densities of stock prices, option pricing functions, and implied volatilities in various stochastic volatility models. The author also establishes sharp asymptotic formulas for the implied volatility at extreme strikes in general stochastic stock price models. The present volume is addressed to researchers and graduate students working in the area of financial mathematics, analysis, or probability theory. The reader is expected to be familiar with elements of classical analysis, stochastic analysis and probability theory.
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
This collection of selected, revised and extended contributions resulted from a Workshop on BSDEs, SPDEs and their Applications that took place in Edinburgh, Scotland, July 2017 and included the 8th World Symposium on BSDEs. The volume addresses recent advances involving backward stochastic differential equations (BSDEs) and stochastic partial differential equations (SPDEs). These equations are of fundamental importance in modelling of biological, physical and economic systems, and underpin many problems in control of random systems, mathematical finance, stochastic filtering and data assimilation. The papers in this volume seek to understand these equations, and to use them to build our understanding in other areas of mathematics. This volume will be of interest to those working at the forefront of modern probability theory, both established researchers and graduate students.
Presents inference and simulation of stochastic process in the field of model calibration for financial times series modelled by continuous time processes and numerical option pricing. Introduces the bases of probability theory and goes on to explain how to model financial times series with continuous models, how to calibrate them from discrete data and further covers option pricing with one or more underlying assets based on these models. Analysis and implementation of models goes beyond the standard Black and Scholes framework and includes Markov switching models, Lévy models and other models with jumps (e.g. the telegraph process); Topics other than option pricing include: volatility and covariation estimation, change point analysis, asymptotic expansion and classification of financial time series from a statistical viewpoint. The book features problems with solutions and examples. All the examples and R code are available as an additional R package, therefore all the examples can be reproduced.
Statistical Tools in Finance and Insurance presents ready-to-use solutions, theoretical developments and method construction for many practical problems in quantitative finance and insurance. Written by practitioners and leading academics in the field, this book offers a unique combination of topics from which every market analyst and risk manager will benefit. Covering topics such as heavy tailed distributions, implied trinomial trees, support vector machines, valuation of mortgage-backed securities, pricing of CAT bonds, simulation of risk processes and ruin probability approximation, the book does not only offer practitioners insight into new methods for their applications, but it also gives theoreticians insight into the applicability of the stochastic technology. Additionally, the book provides the tools, instruments and (online) algorithms for recent techniques in quantitative finance and modern treatments in insurance calculations. Written in an accessible and engaging style, this self-instructional book makes a good use of extensive examples and full explanations. Thenbsp;design of the text links theory and computational tools in an innovative way. All Quantlets for the calculation of examples given in the text are supported by the academic edition of XploRe and may be executed via XploRe Quantlet Server (XQS). The downloadable electronic edition of the book enables one to run, modify, and enhance all Quantlets on the spot.
This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland
This book is a sequel to the author's well-received "Option Valuation under Stochastic Volatility." It extends that work to jump-diffusions and many related topics in quantitative finance. Topics include spectral theory for jump-diffusions, boundary behavior for short-term interest rate models, modelling VIX options, inference theory, discrete dividends, and more. It provides approximately 750 pages of original research in 26 chapters, with 165 illustrations, Mathematica, and some C/C++ codes. The first 12 chapters (550 pages) are completely new. Also included are reprints of selected previous publications of the author for convenient reference. The book should interest both researchers and quantitatively-oriented investors and traders. First 12 chapters: Slow Reflection, Jump-Returns, & Short-term Interest Rates Spectral Theory for Jump-diffusions Joint Time Series Modelling of SPX and VIX Modelling VIX Options (and Futures) under Stochastic Volatility Stochastic Volatility as a Hidden Markov Model Continuous-time Inference: Mathematical Methods and Worked Examples A Closer Look at the Square-root and 3/2-model A Closer Look at the SABR Model Back to Basics: An Update on the Discrete Dividend Problem PDE Numerics without the Pain Exact Solution to Double Barrier Problems under a Class of Processes Advanced Smile Asymptotics: Geometry, Geodesics, and All That