An Introduction to the Theory of Point Processes

An Introduction to the Theory of Point Processes

Author: D.J. Daley

Publisher: Springer Science & Business Media

Published: 2006-04-10

Total Pages: 487

ISBN-13: 0387215646

DOWNLOAD EBOOK

Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.


Encyclopedia of GIS

Encyclopedia of GIS

Author: Shashi Shekhar

Publisher: Springer Science & Business Media

Published: 2007-12-12

Total Pages: 1392

ISBN-13: 038730858X

DOWNLOAD EBOOK

The Encyclopedia of GIS provides a comprehensive and authoritative guide, contributed by experts and peer-reviewed for accuracy, and alphabetically arranged for convenient access. The entries explain key software and processes used by geographers and computational scientists. Major overviews are provided for nearly 200 topics: Geoinformatics, Spatial Cognition, and Location-Based Services and more. Shorter entries define specific terms and concepts. The reference will be published as a print volume with abundant black and white art, and simultaneously as an XML online reference with hyperlinked citations, cross-references, four-color art, links to web-based maps, and other interactive features.


Statistical Analysis and Modelling of Spatial Point Patterns

Statistical Analysis and Modelling of Spatial Point Patterns

Author: Dr. Janine Illian

Publisher: John Wiley & Sons

Published: 2008-04-15

Total Pages: 560

ISBN-13: 9780470725153

DOWNLOAD EBOOK

Spatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one-, two- or three-dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material. Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application-oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience. The book: Provides an introduction to spatial point patterns for researchers across numerous areas of application Adopts an extremely accessible style, allowing the non-statistician complete understanding Describes the process of extracting knowledge from the data, emphasising the marked point process Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science Features a supplementary website containing example datasets. Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.


Statistical Seismology

Statistical Seismology

Author: David Vere-Jones

Publisher: Pageoph Topical Volumes

Published: 2005-07-19

Total Pages: 382

ISBN-13:

DOWNLOAD EBOOK

Statistical Seismology aims to bridge the gap between physics-based and statistics-based models. This volume provides a combination of reviews, methodological studies, and applications, which point to promising efforts in this field. The volume will be useful to students and professional researchers alike, who are interested in using stochastic modeling for probing the nature of earthquake phenomena, as well as an essential ingredient for earthquake forecasting.


Predicting Pandemics in a Globally Connected World, Volume 1

Predicting Pandemics in a Globally Connected World, Volume 1

Author: Nicola Bellomo

Publisher: Springer Nature

Published: 2022-09-22

Total Pages: 314

ISBN-13: 3030965627

DOWNLOAD EBOOK

This contributed volume investigates several mathematical techniques for the modeling and simulation of viral pandemics, with a special focus on COVID-19. Modeling a pandemic requires an interdisciplinary approach with other fields such as epidemiology, virology, immunology, and biology in general. Spatial dynamics and interactions are also important features to be considered, and a multiscale framework is needed at the level of individuals and the level of virus particles and the immune system. Chapters in this volume address these items, as well as offer perspectives for the future.


Statistical Inference and Simulation for Spatial Point Processes

Statistical Inference and Simulation for Spatial Point Processes

Author: Jesper Moller

Publisher: CRC Press

Published: 2003-09-25

Total Pages: 320

ISBN-13: 9780203496930

DOWNLOAD EBOOK

Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.


Case Studies in Spatial Point Process Modeling

Case Studies in Spatial Point Process Modeling

Author: Adrian Baddeley

Publisher: Springer Science & Business Media

Published: 2006-03-03

Total Pages: 312

ISBN-13: 0387311440

DOWNLOAD EBOOK

Point process statistics is successfully used in fields such as material science, human epidemiology, social sciences, animal epidemiology, biology, and seismology. Its further application depends greatly on good software and instructive case studies that show the way to successful work. This book satisfies this need by a presentation of the spatstat package and many statistical examples. Researchers, spatial statisticians and scientists from biology, geosciences, materials sciences and other fields will use this book as a helpful guide to the application of point process statistics. No other book presents so many well-founded point process case studies. From the reviews: "For those interested in analyzing their spatial data, the wide variatey of examples and approaches here give a good idea of the possibilities and suggest reasonable paths to explore." Michael Sherman for the Journal of the American Statistical Association, December 2006


Non-Life Insurance Mathematics

Non-Life Insurance Mathematics

Author: Thomas Mikosch

Publisher: Springer Science & Business Media

Published: 2009-04-21

Total Pages: 435

ISBN-13: 3540882332

DOWNLOAD EBOOK

"Offers a mathematical introduction to non-life insurance and, at the same time, to a multitude of applied stochastic processes. It gives detailed discussions of the fundamental models for claim sizes, claim arrivals, the total claim amount, and their probabilistic properties....The reader gets to know how the underlying probabilistic structures allow one to determine premiums in a portfolio or in an individual policy." --Zentralblatt für Didaktik der Mathematik


Statistics for Spatio-Temporal Data

Statistics for Spatio-Temporal Data

Author: Noel Cressie

Publisher: John Wiley & Sons

Published: 2015-11-02

Total Pages: 612

ISBN-13: 1119243041

DOWNLOAD EBOOK

Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.


Probability Models

Probability Models

Author:

Publisher: Elsevier

Published: 2024-10-24

Total Pages: 828

ISBN-13: 0443293295

DOWNLOAD EBOOK

Probability Models, Volume 51 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters on Stein's methods, Probabilities and thermodynamics third law, Random Matrix Theory, General tools for understanding fluctuations of random variables, An approximation scheme to compute the Fisher-Rao distance between multivariate normal distributions, Probability Models Applied to Reliability and Availability Engineering, Backward stochastic differential equation– Stochastic optimization theory and viscous solution of HJB equation, and much more.Additional chapters cover Probability Models in Machine Learning, The recursive stochastic algorithm, randomized urn models and response-adaptive randomization in clinical trials, Random matrix theory: local laws and applications, KOO methods and their high-dimensional consistencies in some multivariate models, Fourteen Lectures on Inference for Stochastic Processes, and A multivariate cumulative damage model and some applications. - Provides the latest information on probability models - Offers outstanding and original reviews on a range of probability models research topics - Serves as an indispensable reference for researchers and students alike