Estimation and Inference in Discrete Event Systems

Estimation and Inference in Discrete Event Systems

Author: Christoforos N. Hadjicostis

Publisher: Springer Nature

Published: 2019-10-02

Total Pages: 357

ISBN-13: 3030308219

DOWNLOAD EBOOK

Estimation and Inference in Discrete Event Systems chooses a popular model for emerging automation systems—finite automata under partial observation—and focuses on a comprehensive study of the key problems of state estimation and event inference. The text includes treatment of current, delayed, and initial state estimation. Related applications for assessing and enforcing resiliency—fault detection and diagnosis—and security—privacy and opacity—properties are discussed, enabling the reader to apply these techniques in a variety of emerging applications, among them automated manufacturing processes, intelligent vehicle/highway systems, and autonomous vehicles. The book provides a systematic development of recursive algorithms for state estimation and event inference. The author also deals with the verification of pertinent properties such as: the ability to determine the exact state of a system, “detectability”; the ability to ensure that certain classes of faults can be detected/identified, “diagnosability”; and the ability to ensure that certain internal state variables of the system remain “hidden” from the outside world regardless of the type of activity that is taking place, “opacity”. This book allows students, researchers and practicing engineers alike to grasp basic aspects of state estimation in discrete event systems, aspects like distributivity and probabilistic inference, quickly and without having to master the entire breadth of models that are available in the literature.


Introduction to Discrete Event Systems

Introduction to Discrete Event Systems

Author: Christos G. Cassandras

Publisher: Springer Nature

Published: 2021-11-11

Total Pages: 821

ISBN-13: 3030722740

DOWNLOAD EBOOK

This unique textbook comprehensively introduces the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queueing theory, discrete-event simulation, and concurrent estimation techniques. Topics and features: detailed treatment of automata and language theory in the context of discrete event systems, including application to state estimation and diagnosis comprehensive coverage of centralized and decentralized supervisory control of partially-observed systems timed models, including timed automata and hybrid automata stochastic models for discrete event systems and controlled Markov chains discrete event simulation an introduction to stochastic hybrid systems sensitivity analysis and optimization of discrete event and hybrid systems new in the third edition: opacity properties, enhanced coverage of supervisory control, overview of latest software tools This proven textbook is essential to advanced-level students and researchers in a variety of disciplines where the study of discrete event systems is relevant: control, communications, computer engineering, computer science, manufacturing engineering, transportation networks, operations research, and industrial engineering. ​Christos G. Cassandras is Distinguished Professor of Engineering, Professor of Systems Engineering, and Professor of Electrical and Computer Engineering at Boston University. Stéphane Lafortune is Professor of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor.


Discrete Event Simulation

Discrete Event Simulation

Author: Udo W. Pooch

Publisher: CRC Press

Published: 1992-12-21

Total Pages: 432

ISBN-13: 9780849371745

DOWNLOAD EBOOK

Discrete Event Simulation is a process-oriented text/reference that utilizes an eleven-step model to represent the simulation process from problem formulation to implementation and documentation. The book presents the necessary level of detail required to fully develop a model that produces meaningful results and considers the tools necessary to interpret those results. Sufficient background information is provided so that the underlying concepts of simulation are understood. Major topics covered in Discrete Event Simulation include probability and distributional theory, statistical estimation and inference, the generation of random variates, verification and validation techniques, time management methods, experimental design, and programming language considerations. The book also examines distributed simulation and issues related to distributing the physical process over a network of tightly coupled processors. Topics covered in this area include deadlock, synchronization, rollback, event management, and communication processes. Fully worked examples and numerous practical exercises have been drawn from the engineering disciplines and computer science, although they have been structured so that they will be useful as well to other disciplines such as economics, business administration, and management science. The presentation of techniques and methods in Discrete Event Simulation make it an ideal text/reference for all practitioners of discrete event simulation.


Cybersecurity of Discrete Event Systems

Cybersecurity of Discrete Event Systems

Author: Rong Su

Publisher: CRC Press

Published: 2024-09-05

Total Pages: 220

ISBN-13: 1040031366

DOWNLOAD EBOOK

This book describes analysis and control against smart cyberattacks in discrete event systems (DES). This is the first technical DES book to provide a thorough introduction to smart cyberattacks on supervisory control systems modelled by regular languages or finite-state automata and possible resilient defence methods against smart cyberattacks. "Smart attacks" cannot be detected by the supervisor until an irreversible process toward ensured damage occurs. An attack may be conducted either in the observation channel (i.e., the supervisor’s input of the supervisor) or in the command channel (i.e., the supervisor’s output) or both simultaneously. Therefore, defence strategies against these attacks are urgently needed. Rong Su provides a comprehensive overview of the latest theories and includes empirical examples to illustrate concepts and methods. By centering on what information is available and how such information is used, the readers are provided with methods to evaluate the cyber vulnerability of a given system and design a resilient supervisor against relevant smart attacks. This book comprises two sections. Firstly, Su introduces the required concepts and techniques related to DES and supervisory control. Then he introduces different types of smart attacks that intercept and manipulate information in sensor and command channels in a standard closed-loop control system. Secondly, he presents resilient defence strategies against relevant types of attacks. By focusing on a conceptual introduction and systematic analysis, this book provides a solid theoretical foundation for future exploration by researchers and graduate students who are interested in cybersecurity research, not necessarily limited to those in the DES community. To illustrate the practical relevance of this research, realistic examples are used throughout this book. Readers are recommended to have a background in formal language theory.


Discrete Event Systems

Discrete Event Systems

Author: R. Boel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 489

ISBN-13: 1461544939

DOWNLOAD EBOOK

Discrete Event Systems: Analysis and Control is the proceedings of WODES2000 (the 5th Workshop on Discrete Event Systems, held in Ghent, Belgium, on August 21-23, 2000). This book provides a survey of the current state of the art in the field of modeling, analysis and control synthesis of discrete event systems, lecture notes for a mini course on sensitivity analysis for performance evaluation of timed discrete event systems, and 48 carefully selected papers covering all areas of discrete event theory and the most important applications domains. Topics include automata theory and supervisory control (12); Petri net based models for discrete event systems, and their control synthesis (11); (max,+) and timed automata models (9); applications papers related to scheduling, failure detection, and implementation of supervisory controllers (7); formal description of PLCs (6); and finally, stochastic models of discrete event systems (3).


Stability Analysis of Discrete Event Systems

Stability Analysis of Discrete Event Systems

Author: Kevin M. Passino

Publisher: Wiley-Interscience

Published: 1998-03-16

Total Pages: 228

ISBN-13:

DOWNLOAD EBOOK

An authoritative presentation on an important emerging field. Discrete event systems are ubiquitous in modern society, and we rely heavily on their proper design, correct operation, and performance. Written by leaders in the field who have helped establish the foundations of the theory and applied the methods to a wide variety of applications, Stability Analysis of Discrete Event Systems is useful both as a textbook (homework problems are included) and for researchers in systems and control theory. This book includes many examples and three detailed case studies: computer network load balancing, manufacturing system scheduling, and intelligent control systems. Important features of this book include: A concise introduction to discrete event system modeling—including Petri nets Comprehensive treatment of stability concepts and Lyapunov analysis methods Stability of Petri models Case studies in Computer network load balancing system behavior and analysis Manufacturing system scheduler design and analysis Intelligent control system modeling and analysis (for expert control systems) An outlook on the role of stability concepts and analysis in intelligent, autonomous, and hybrid systems.


Modeling and Control of Logical Discrete Event Systems

Modeling and Control of Logical Discrete Event Systems

Author: Ratnesh Kumar

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 154

ISBN-13: 146152217X

DOWNLOAD EBOOK

The field of discrete event systems has emerged to provide a formal treatment of many of the man-made systems such as manufacturing systems, communica tion networks. automated traffic systems, database management systems, and computer systems that are event-driven, highly complex, and not amenable to the classical treatments based on differential or difference equations. Discrete event systems is a growing field that utilizes many interesting mathematical models and techniques. In this book we focus on a high level treatment of discrete event systems. where the order of events. rather than their occurrence times, is the principal concern. Such treatment is needed to guarantee that the system under study meets desired logical goals. In this framework, dis crete event systems are modeled by formal languages or, equivalently, by state machines. The field of logical discrete event systems is an interdisciplinary field-it in cludes ideas from computer science, control theory, and operations research. Our goal is to bring together in one book the relevant techniques from these fields. This is the first book of this kind, and our hope is that it will be useful to professionals in the area of discrete event systems since most of the material presented has appeared previously only in journals. The book is also designed for a graduate level course on logical discrete event systems. It contains all the necessary background material in formal language theory and lattice the ory. The only prerequisite is some degree of "mathematical maturity".