Hydrodynamics of Time-Periodic Groundwater Flow introduces the emerging topic of periodic fluctuations in groundwater. While classical hydrology has often focused on steady flow conditions, many systems display periodic behavior due to tidal, seasonal, annual, and human influences. Describing and quantifying subsurface hydraulic responses to these influences may be challenging to those who are unfamiliar with periodically forced groundwater systems. The goal of this volume is to present a clear and accessible mathematical introduction to the basic and advanced theory of time-periodic groundwater flow, which is essential for developing a comprehensive knowledge of groundwater hydraulics and groundwater hydrology. Volume highlights include: Overview of time-periodic forcing of groundwater systems Definition of the Boundary Value Problem for harmonic systems in space and time Examples of 1-, 2-, and 3-dimensional flow in various media Attenuation, delay, and gradients, stationary points and flow stagnation Wave propagation and energy transport Hydrodynamics of Time-Periodic Groundwater Flow presents numerous examples and exercises to reinforce the essential elements of the theoretical development, and thus is eminently well suited for self-directed study by undergraduate and graduate students. This volume will be a valuable resource for professionals in Earth and environmental sciences who develop groundwater models., including in the fields of groundwater hydrology, soil physics, hydrogeology, geoscience, geophysics, and geochemistry. Time-periodic phenomena are also encountered in fields other than groundwater flow, such as electronics, heat transport, and chemical diffusion. Thus, students and professionals in the field of chemistry, electronic engineering, and physics will also find this book useful. Read an interview with the editors to find out more: https://eos.org/editors-vox/a-foundation-for-modeling-time-periodic-groundwater-flow
This book discusses the geology, hydrogeology, and water quality/geochemistry of karst systems in geologically young terrain, using the state of Florida as an example. Also discussed are sinkhole-development models; sinkhole risk; eogenetic karst features developed in rocks as young as 125,000 years and as old as 65 million years; and karst landscapes of Florida, including regional geology and geomorphology with important examples of karst features, such as springs, sinkholes, caves, and other karst landforms. The eogenetic karst of Florida is largely covered and this book extensively discusses the interactions of karst processes with sand- and clay-rich cover materials.
This book presents an overview of techniques that are available to characterize sedimentary aquifers. Groundwater flow and solute transport are strongly affected by aquifer heterogeneity. Improved aquifer characterization can allow for a better conceptual understanding of aquifer systems, which can lead to more accurate groundwater models and successful water management solutions, such as contaminant remediation and managed aquifer recharge systems. This book has an applied perspective in that it considers the practicality of techniques for actual groundwater management and development projects in terms of costs, technical resources and expertise required, and investigation time. A discussion of the geological causes, types, and scales of aquifer heterogeneity is first provided. Aquifer characterization methods are then discussed, followed by chapters on data upscaling, groundwater modelling, and geostatistics. This book is a must for every practitioner, graduate student, or researcher dealing with aquifer characterization .
Sequence stratigraphy is a powerful tool for the prediction of depositional porosity and permeability, but does not account for the impact of diagenesis on these reservoir parameters. Therefore, integrating diagenesis and sequence stratigraphy can provide a better way of predicting reservoir quality. This special publication consists of 19 papers (reviews and case studies) exploring different aspects of the integration of diagenesis and sequence stratigraphy in carbonate, siliciclastic, and mixed carbonate-siliciclastic successions from various geological settings. This book will be of interest to sedimentary petrologists aiming to understand the distribution of diagenesis in siliciclastic and carbonate successions, to sequence stratigraphers who can use diagenetic features to recognize and verify interpreted key stratigraphic surfaces, and to petroleum geologists who wish to develop more realistic conceptual models for the spatial and temporal distribution of reservoir quality. This book is part of the International Association of Sedimentologists (IAS) Special Publications. The Special Publications from the IAS are a set of thematic volumes edited by specialists on subjects of central interest to sedimentologists. Papers are reviewed and printed to the same high standards as those published in the journal Sedimentology and several of these volumes have become standard works of reference.