Practical Statistics for Data Scientists

Practical Statistics for Data Scientists

Author: Peter Bruce

Publisher: "O'Reilly Media, Inc."

Published: 2017-05-10

Total Pages: 322

ISBN-13: 1491952911

DOWNLOAD EBOOK

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data


The Assessment Challenge in Statistics Education

The Assessment Challenge in Statistics Education

Author: Iddo Gal

Publisher:

Published: 1997

Total Pages: 300

ISBN-13: 9784274901584

DOWNLOAD EBOOK

This book discusses conceptual and pragmatic issues in the assessment of statistical knowledge and reasoning skills among students at the college and precollege levels, and the use of assessments to improve instruction. It is designed primarily for academic audiences involved in teaching statistics and mathematics, and in teacher education and training. The book is divided in four sections: (I) Assessment goals and frameworks, (2) Assessing conceptual understanding of statistical ideas, (3) Innovative models for classroom assessments, and (4) Assessing understanding of probability.


Statistics for Archaeologists

Statistics for Archaeologists

Author: Robert D. Drennan

Publisher: Springer Science & Business Media

Published: 2009-08-11

Total Pages: 332

ISBN-13: 1441904131

DOWNLOAD EBOOK

In the decade since its publication, the first edition of Statistics for Archaeologists has become a staple in the classroom. Taking a jargon-free approach, this teaching tool introduces the basic principles of statistics to archaeologists. The author covers the necessary techniques for analyzing data collected in the field and laboratory as well as for evaluating the significance of the relationships between variables. In addition, chapters discuss the special concerns of working with samples. This well-illustrated guide features several practice problems making it an ideal text for students in archaeology and anthropology. Using feedback from students and teachers who have been using the first edition, as well as another ten years of personal experience with the text, the author has provided an updated and revised second edition with a number of important changes. New topics covered include: -Proportions and Densities -Error Ranges for Medians -Resampling Approaches -Residuals from Regression -Point Sampling -Multivariate Analysis -Similarity Measures -Multidimensional Scaling -Principal Components Analysis -Cluster Analysis Those already familiar with the clear and useful format of Statistics for Archaeologists will find this new edition a welcome update, and the new sections will make this seminal textbook an indispensible resource for a whole new group of students, professors, and practitioners.


Statistics and Data Interpretation for Social Work

Statistics and Data Interpretation for Social Work

Author: James A. Rosenthal, PhD

Publisher: Springer Publishing Company

Published: 2011-12-16

Total Pages: 490

ISBN-13: 0826107214

DOWNLOAD EBOOK

Written by a social worker for social work students, this is a nuts and bolts guide to statistics that presents complex calculations and concepts in clear, easy-to-understand language. It includes numerous examples, data sets, and issues that students will encounter in social work practice. The first section introduces basic concepts and terms to provide a solid foundation in statistics. It also addresses tools used by researchers to describe and summarize data ranging from single variables to assessing the relationship between variables and cause and effect among variables. The second section focuses on inferential statistics, describing how researchers draw conclusions about whole populations based on data from samples. This section also covers confidence intervals and a variety of significance tests for examining relationships between different types of variables. Additionally, tools for multivariate analyses and data interpretation are presented. Key Features: Addresses the role of statistics in evidence-based practice and program evaluation Features examples of qualitative and quantitative analysis Each chapter contains exercise problems and questions to enhance student learning Includes electronic data sets taken from actual social work arenas Offers a full ancillary digital packet including a student guide to SPSS with accompanying Data Set, an Instructor's Manual, PowerPoint slides, and a Test Bank


ESTADISTICA OBSTÉTRICA, TOMO I. GUIA PARA MATRONAS

ESTADISTICA OBSTÉTRICA, TOMO I. GUIA PARA MATRONAS

Author: María Isabel Fernández Aranda

Publisher: Lulu.com

Published: 2013-05-05

Total Pages: 86

ISBN-13: 1291408967

DOWNLOAD EBOOK

Iniciamos este libro con algunos conceptos básicos y elementales para una comprensión real e intuitiva de lo que es la Estadística Aplicada, sobre todo su aplicación a los problemas de la Enfermería y especialmente la especialidad de Matrona.


An Introduction to Statistical Learning

An Introduction to Statistical Learning

Author: Gareth James

Publisher: Springer Nature

Published: 2023-08-01

Total Pages: 617

ISBN-13: 3031387473

DOWNLOAD EBOOK

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.


Author:

Publisher: Bib. Orton IICA / CATIE

Published:

Total Pages: 236

ISBN-13:

DOWNLOAD EBOOK


Statistics for Machine Learning

Statistics for Machine Learning

Author: Pratap Dangeti

Publisher: Packt Publishing Ltd

Published: 2017-07-21

Total Pages: 438

ISBN-13: 1788291220

DOWNLOAD EBOOK

Build Machine Learning models with a sound statistical understanding. About This Book Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering. Master the statistical aspect of Machine Learning with the help of this example-rich guide to R and Python. Who This Book Is For This book is intended for developers with little to no background in statistics, who want to implement Machine Learning in their systems. Some programming knowledge in R or Python will be useful. What You Will Learn Understand the Statistical and Machine Learning fundamentals necessary to build models Understand the major differences and parallels between the statistical way and the Machine Learning way to solve problems Learn how to prepare data and feed models by using the appropriate Machine Learning algorithms from the more-than-adequate R and Python packages Analyze the results and tune the model appropriately to your own predictive goals Understand the concepts of required statistics for Machine Learning Introduce yourself to necessary fundamentals required for building supervised & unsupervised deep learning models Learn reinforcement learning and its application in the field of artificial intelligence domain In Detail Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for Machine Learning. You will gain information on statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. Understand the real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. You will also design programs for performing tasks such as model, parameter fitting, regression, classification, density collection, and more. By the end of the book, you will have mastered the required statistics for Machine Learning and will be able to apply your new skills to any sort of industry problem. Style and approach This practical, step-by-step guide will give you an understanding of the Statistical and Machine Learning fundamentals you'll need to build models.