This practical, one-stop guide will quickly bring you up to speed on LTE and LTE-Advanced. With everything you need to know about the theory and technology behind the standards, this is a must-have for engineers and managers in the wireless industry. • First book of its kind describing technologies and system performance of LTE-A • Covers the evolution of digital wireless technology, basics of LTE and LTE-A, design of downlink and uplink channels, multi-antenna techniques and heterogeneous networks • Analyzes performance benefits over competing technologies, including WiMAX and 802.16m • Reflects the latest LTE Release-10 standards • Includes numerous examples, including extensive system and link results • Unique approach is accessible to technical and non-technical readers alike
Following on from the successful first edition (March 2012), this book gives a clear explanation of what LTE does and how it works. The content is expressed at a systems level, offering readers the opportunity to grasp the key factors that make LTE the hot topic amongst vendors and operators across the globe. The book assumes no more than a basic knowledge of mobile telecommunication systems, and the reader is not expected to have any previous knowledge of the complex mathematical operations that underpin LTE. This second edition introduces new material for the current state of the industry, such as the new features of LTE in Releases 11 and 12, notably coordinated multipoint transmission and proximity services; the main short- and long-term solutions for LTE voice calls, namely circuit switched fallback and the IP multimedia subsystem; and the evolution and current state of the LTE market. It also extends some of the material from the first edition, such as inter-operation with other technologies such as GSM, UMTS, wireless local area networks and cdma2000; additional features of LTE Advanced, notably heterogeneous networks and traffic offloading; data transport in the evolved packet core; coverage and capacity estimation for LTE; and a more rigorous treatment of modulation, demodulation and OFDMA. The author breaks down the system into logical blocks, by initially introducing the architecture of LTE, explaining the techniques used for radio transmission and reception and the overall operation of the system, and concluding with more specialized topics such as LTE voice calls and the later releases of the specifications. This methodical approach enables readers to move on to tackle the specifications and the more advanced texts with confidence.
A practical guide to LTE design, test and measurement, this new edition has been updated to include the latest developments This book presents the latest details on LTE from a practical and technical perspective. Written by Agilent’s measurement experts, it offers a valuable insight into LTE technology and its design and test challenges. Chapters cover the upper layer signaling and system architecture evolution (SAE). Basic concepts such as MIMO and SC-FDMA, the new uplink modulation scheme, are introduced and explained, and the authors look into the challenges of verifying the designs of the receivers, transmitters and protocols of LTE systems. The latest information on RF and signaling conformance testing is delivered by authors participating in the LTE 3GPP standards committees. This second edition has been considerably revised to reflect the most recent developments of the technologies and standards. Particularly important updates include an increased focus on LTE-Advanced as well as the latest testing specifications. Fully updated to include the latest information on LTE 3GPP standards Chapters on conformance testing have been majorly revised and there is an increased focus on LTE-Advanced Includes new sections on testing challenges as well as over the air MIMO testing, protocol testing and the most up-to-date test capabilities of instruments Written from both a technical and practical point of view by leading experts in the field
Provides a unique focus on radio protocols for LTE and LTE-Advanced (LTE-A) Giving readers a valuable understanding of LTE radio protocols, this book covers LTE (Long-Term Evolution) Layer 2/3 radio protocols as well as new features including LTE-Advanced. It is divided into two sections to differentiate between the two technologies’ characteristics. The authors systematically explain the design principles and functions of LTE radio protocols during the development of mobile handsets. The book also provides essential knowledge on the interaction between mobile networks and mobile handsets. Among the first publications based on the 3GPP R10 specifications, which introduces LTE-A Beginning with an overview of LTE, topics covered include: Idle Mode Procedure; Packet Data Convergence Protocol and Public Warning Systems Presents the LTE radio interface protocol layers in a readable manner, to enhance the material in the standards publications From an expert author team who have been directly working on the 3GPP standards It is targeted at professionals working or intending to work in the area and can also serve as supplementary reading material for students who need to know how theory on the most extensively used mobile radio interface today is put into practice
Voice over LTE (Long Term Evolution) presents the mechanisms put in place in 4G mobile networks for the transportation of IP packets containing voice data and telephone signaling, as well as the technologies used to provide a telephone service in the IMS (IP Multimedia Sub-system) network. Despite the difficulty connected to the handover of the 4G network to the 2G/3G network, a telephone communication will not be established on the 4G network. This book analyzes the technologies that have been put in place, such as CSFB (Circuit Service FallBack), an interim solution that enables a mobile connected to the 4G network to receive an alert transmitted by the 2G/3G network. The book also goes on to develop the SIP (Session Information Protocol) on which the telephone signaling transferred by the 4G network is based, the IMS network that provides the service and defines the routing, the SRVCC (Single Radio Voice Call Continuity) mechanism that maintains communication and the TAS (Telephony Application Server) that supplies supplementary services. Contents 1. The EPS Network. 2. The LTE Interface. 3. The CSFB Function. 4. SIP and SDP Protocols. 5. The IMS Network. 6. Telephone Services. 7. The SRVCC Function. About the Authors André Perez is a consultant and teacher in networks and telecommunications. He works with industrialists and operators regarding architecture studies and leads training on the 4G and IMS networks for NEXCOM.
A concise introduction to IMT-Advanced Systems, including LTE-Advanced and WiMAX There exists a strong demand for fully extending emerging Internet services, including collaborative applications and social networking, to the mobile and wireless domain. Delivering such services can be possible only through realizing broadband in the wireless. Two candidate technologies are currently competing in fulfilling the requirements for wireless broadband networks, WiMAX and LTE. At the moment, LTE and its future evolution LTE-Advanced are already gaining ground in terms of vendor and operator support. Whilst both technologies share certain attributes (utilizing Orthogonal Frequency Division Multiple Access (OFDMA) in downlink, accommodating smart antennas and full support for IP-switching, for example), they differ in others (including uplink technology, scheduling, frame structure and mobility support). Beyond technological merits, factors such as deployment readiness, ecosystem maturity and migration feasibility come to light when comparing the aptitude of the two technologies. LTE, LTE-Advanced and WiMAX: Towards IMT-Advanced Networks provides a concise, no-nonsense introduction to the two technologies, covering both interface and networking considerations. More critically, the book gives a multi-faceted comparison, carefully analyzing and distinguishing the characteristics of each technology and spanning both technical and economic merits. A “big picture” understanding of the market strategies and forecasts is also offered. Discusses and critically evaluates LTE, LTE-Advanced and WiMAX (Legacy and Advanced) Gives an overview of the principles and advances of each enabling technology Offers a feature-by-feature comparison between the candidate technologies Includes information which appeals to both industry practitioners and academics Provides an up-to-date report on market and industry status
A comprehensive resource containing the operating principles and key insights of LTE networks performance optimization LTE Optimization Engineering Handbook is a comprehensive reference that describes the most current technologies and optimization principles for LTE networks. The text offers an introduction to the basics of LTE architecture, services and technologies and includes details on the key principles and methods of LTE optimization and its parameters. In addition, the author clarifies different optimization aspects such as wireless channel optimization, data optimization, CSFB, VoLTE, and video optimization. With the ubiquitous usage and increased development of mobile networks and smart devices, LTE is the 4G network that will be the only mainstream technology in the current mobile communication system and in the near future. Designed for use by researchers, engineers and operators working in the field of mobile communications and written by a noted engineer and experienced researcher, the LTE Optimization Engineering Handbook provides an essential guide that: Discusses the latest optimization engineering technologies of LTE networks and explores their implementation Features the latest and most industrially relevant applications, such as VoLTE and HetNets Includes a wealth of detailed scenarios and optimization real-world case studies Professionals in the field will find the LTE Optimization Engineering Handbook to be their go-to reference that includes a thorough and complete examination of LTE networks, their operating principles, and the most current information to performance optimization.
This revised edition of Communication Systems from GSM to LTE: An Introduction to Mobile Networks and Mobile Broadband Second Edition (Wiley 2010) contains not only a technical description of the different wireless systems available today, but also explains the rationale behind the different mechanisms and implementations; not only the ‘how’ but also the ‘why’. In this way, the advantages and also limitations of each technology become apparent. Offering a solid introduction to major global wireless standards and comparisons of the different wireless technologies and their applications, this edition has been updated to provide the latest directions and activities in 3GPP standardization up to Release 12, and importantly includes a new chapter on Voice over LTE (VoLTE). There are new sections on Building Blocks of a Voice Centric Device, Building Blocks of a Smart Phone, Fast Dormancy, IMS and High-Speed Downlink Packet Access, and Wi-Fi-Protected Setup. Other sections have been considerably updated in places reflecting the current state of the technology. • Describes the different systems based on the standards, their practical implementation and design assumptions, and the performance and capacity of each system in practice is analyzed and explained • Questions at the end of each chapter and answers on the accompanying website make this book ideal for self-study or as course material
Summarizes and surveys current LTE technical specifications and implementation options for engineers and newly qualified support staff Concentrating on three mobile communication technologies, GSM, 3G-WCDMA, and LTE—while majorly focusing on Radio Access Network (RAN) technology—this book describes principles of mobile radio technologies that are used in mobile phones and service providers’ infrastructure supporting their operation. It introduces some basic concepts of mobile network engineering used in design and rollout of the mobile network. It then follows up with principles, design constraints, and more advanced insights into radio interface protocol stack, operation, and dimensioning for three major mobile network technologies: Global System Mobile (GSM) and third (3G) and fourth generation (4G) mobile technologies. The concluding sections of the book are concerned with further developments toward next generation of mobile network (5G). Those include some of the major features of 5G such as a New Radio, NG-RAN distributed architecture, and network slicing. The last section describes some key concepts that may bring significant enhancements in future technology and services experienced by customers. Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G covers the types of Mobile Network by Multiple Access Scheme; the cellular system; radio propagation; mobile radio channel; radio network planning; EGPRS - GPRS/EDGE; Third Generation Network (3G), UMTS; High Speed Packet data access (HSPA); 4G-Long Term Evolution (LTE) system; LTE-A; and Release 15 for 5G. Focuses on Radio Access Network technologies which empower communications in current and emerging mobile network systems Presents a mix of introductory and advanced reading, with a generalist view on current mobile network technologies Written at a level that enables readers to understand principles of radio network deployment and operation Based on the author’s post-graduate lecture course on Wireless Engineering Fully illustrated with tables, figures, photographs, working examples with problems and solutions, and section summaries highlighting the key features of each technology described Written as a modified and expanded set of lectures on wireless engineering taught by the author, Introduction to Mobile Network Engineering: GSM, 3G-WCDMA, LTE and the Road to 5G is an ideal text for post-graduate and graduate students studying wireless engineering, and industry professionals requiring an introduction or refresher to existing technologies.