This book offers a thorough introduction to the field of fuzzy logic with complete coverage of both relevant theory and applications. With its comprehensive presentation of fuzzy logic as well as coverage of both fuzzy control and modeling, this text is destined to become the classic primer in this quickly developing field.
In the last ten years, a true explosion of investigations into fuzzy modeling and its applications in control, diagnostics, decision making, optimization, pattern recognition, robotics, etc. has been observed. The attraction of fuzzy modeling results from its intelligibility and the high effectiveness of the models obtained. Owing to this the modeling can be applied for the solution of problems which could not be solved till now with any known conventional methods. The book provides the reader with an advanced introduction to the problems of fuzzy modeling and to one of its most important applications: fuzzy control. It is based on the latest and most significant knowledge of the subject and can be used not only by control specialists but also by specialists working in any field requiring plant modeling, process modeling, and systems modeling, e.g. economics, business, medicine, agriculture,and meteorology.
Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.
This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.
This collection compiles the seminal contributions of Michio Sugeno on fuzzy systems and technologies. Fuzzy Modeling & Control: Selected Works of Sugeno serves as a singular resource that provides a clear, comprehensive treatment of fuzzy control systems. The book comprises two parts fuzzy system identification and modeling systems control Each part outlines the fundamentals of fuzzy logic and covers essential material for understanding the mathematical and modeling details in Sugeno's works. Introductory chapters include extended summaries of each paper or group of papers, suggesting where the theories discussed might be useful in application.
An introductory book that provides theoretical, practical, and application coverage of the emerging field of type-2 fuzzy logic control Until recently, little was known about type-2 fuzzy controllers due to the lack of basic calculation methods available for type-2 fuzzy sets and logic—and many different aspects of type-2 fuzzy control still needed to be investigated in order to advance this new and powerful technology. This self-contained reference covers everything readers need to know about the growing field. Written with an educational focus in mind, Introduction to Type-2 Fuzzy Logic Control: Theory and Applications uses a coherent structure and uniform mathematical notations to link chapters that are closely related, reflecting the book’s central themes: analysis and design of type-2 fuzzy control systems. The book includes worked examples, experiment and simulation results, and comprehensive reference materials. The book also offers downloadable computer programs from an associated website. Presented by world-class leaders in type-2 fuzzy logic control, Introduction to Type-2 Fuzzy Logic Control: Is useful for any technical person interested in learning type-2 fuzzy control theory and its applications Offers experiment and simulation results via downloadable computer programs Features type-2 fuzzy logic background chapters to make the book self-contained Provides an extensive literature survey on both fuzzy logic and related type-2 fuzzy control Introduction to Type-2 Fuzzy Logic Control is an easy-to-read reference book suitable for engineers, researchers, and graduate students who want to gain deep insight into type-2 fuzzy logic control.
Modern industrial processes and systems require adaptable advanced control protocols able to deal with circumstances demanding "judgement” rather than simple "yes/no”, "on/off” responses: circumstances where a linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious for this purpose. Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real industrial systems and simulations. The second part exploits such models to design control systems employing techniques like data mining. This monograph presents a combination of fuzzy control theory and industrial serviceability that will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student.
In the early 1970s, fuzzy systems and fuzzy control theories added a new dimension to control systems engineering. From its beginnings as mostly heuristic and somewhat ad hoc, more recent and rigorous approaches to fuzzy control theory have helped make it an integral part of modern control theory and produced many exciting results. Yesterday's "art
Examines the methodology and algorithms of fuzzy sets considered mainly in the context of control engineering and system modelling and analysis. Special emphasis is focused on the processing of fuzzy information realized with the aid of fuzzy relational structures and their extensions.
A self-contained treatment of fuzzy systems engineering, offering conceptual fundamentals, design methodologies, development guidelines, and carefully selected illustrative material Forty years have passed since the birth of fuzzy sets, in which time a wealth of theoretical developments, conceptual pursuits, algorithmic environments, and other applications have emerged. Now, this reader-friendly book presents an up-to-date approach to fuzzy systems engineering, covering concepts, design methodologies, and algorithms coupled with interpretation, analysis, and underlying engineering knowledge. The result is a holistic view of fuzzy sets as a fundamental component of computational intelligence and human-centric systems. Throughout the book, the authors emphasize the direct applicability and limitations of the concepts being discussed, and historical and bibliographical notes are included in each chapter to help readers view the developments of fuzzy sets from a broader perspective. A radical departure from current books on the subject, Fuzzy Systems Engineering presents fuzzy sets as an enabling technology whose impact, contributions, and methodology stretch far beyond any specific discipline, making it applicable to researchers and practitioners in engineering, computer science, business, medicine, bioinformatics, and computational biology. Additionally, three appendices and classroom-ready electronic resources make it an ideal textbook for advanced undergraduate- and graduate-level courses in engineering and science.