Fluid Bed Technology in Materials Processing comprehensively covers the various aspects of fluidization engineering and presents an elaborate examination of the applications in a multitude of materials processing techniques. This singular resource discusses: All the basic aspects of fluidization essential to understand and learn about various techniques The range of industrial applications Several examples in extraction and process metallurgy Fluidization in nuclear engineering and nuclear fuel cycle with numerous examples Innovative techniques and several advanced concepts of fluidization engineering, including use and applications in materials processing as well as environmental and bio-engineering Pros and cons of various fluidization equipment and specialty of their applications, including several examples Design aspects and modeling Topics related to distributors effects and flow regimes A separate chapter outlines the importance of fluidization engineering in high temperature processing, including an analysis of the fundamental concepts and applications of high temperature fluidized bed furnaces for several advanced materials processing techniques. Presenting information usually not available in a single source, Fluid Bed Technology in Materials Processing serves Fluidization engineers Practicing engineers in process metallurgy, mineral engineering, and chemical metallurgy Researchers in the field of chemical, metallurgical, nuclear, biological, environmental engineering Energy engineering professionals High temperature scientists and engineers Students and professionals who adopt modeling of fluidization in their venture for design and scale up
Since the pioneering text by Mathur and Epstein over 35 years ago, much of the work on this subject has been extended or superseded, producing an enormous body of scattered literature. This edited volume unifies the subject, pulling material together and underpinning it with fundamental theory to produce the only complete, up-to-date reference on all major areas of spouted bed research and practice. With contributions from internationally renowned research groups, this book guides the reader through new developments, insights and models. The hydrodynamic and reactor models of spouted and spout-fluid beds are examined, as well as such topics as particle segregation, heat and mass transfer, mixing and scale-up. Later chapters focus on drying, particle-coating and energy-related applications based on spouted and spout-fluid beds. This is a valuable resource for chemical and mechanical engineers in research and industry.
Fully comprehensive introduction to the rapidly emerging area of micro systems technology Transport Phenomena in Micro Systems explores the fundamentals of the new technologies related to Micro-Electro-Mechanical Systems (MEMS). It deals with the behavior, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale, such as nl, pl, fl, small size, low energy consumption, effects of the micro domain and heat transfer in the related devices. The author describes in detail and with extensive illustration micro fabrication, channel flow, transport laws, magnetophoresis, micro scale convection and micro sensors and activators, among others. This book spans multidisciplinary fields such as material science and mechanical engineering, engineering, physics, chemistry, microtechnology and biotechnology. Brings together in one collection recent and emerging developments in this fast-growing area of micro systems Covers multidisciplinary fields such as materials science, mechanical engineering, microtechnology and biotechnology, et al Comprehensive coverage of analytical models in microfluidics and MEMS technology Introduces micro fluidics applications include the development of inkjet printheads, micro-propulsion, and micro thermal technologies Presented in a very logical format Supplies readers with problems and solutions
Gas Separation by Adsorption Processes provides a thorough discussion of the advancement in gas adsorption process. The book is comprised of eight chapters that emphasize the fundamentals concept and principles. The text first covers the adsorbents and adsorption isotherms, and then proceeds to detailing the equilibrium adsorption of gas mixtures. Next, the book covers rate processes in adsorbers and adsorber dynamics. The next chapter discusses cyclic gas separation processes, and the remaining two chapters cover pressure-swing adsorption. The book will be of great use to students, researchers, and practitioners of disciplines that involve gas separation processes, such as chemical engineering.
Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.
The past 30 years have seen the establishment of food engineering both as an academic discipline and as a profession. Combining scientific depth with practical usefulness, this book serves as a tool for graduate students as well as practicing food engineers, technologists and researchers looking for the latest information on transformation and preservation processes as well as process control and plant hygiene topics. - Strong emphasis on the relationship between engineering and product quality/safety - Links theory and practice - Considers topics in light of factors such as cost and environmental issues
Over the last decade, circulating fluidization or fast fluidization has developed rapidly, superseding standard bubbling fluidization in many applications; for example, fast fluidization provides a better means forcontrolling emissions from the combustion of high-sulfur fuels and excels when used in boilers in steam plant and power stations. China initiated the study of fast fluidization in the early 1970s. Focusing on the substantial research cultivated in that country, with Kwauk at the leading edge, this latest volume in the Advances in Chemical Engineering Series is written in the context of the international state of the art and addresses some of the most vital issues surrounding this fluidization method."