This is the sixth volume in a series providing surveys of differential geometry. It addresses: Einstein manifolds with zero Ricci curvature; rigidity and compactness of Einstein metrics; general relativity; the stability of Minkowski space-time; and more.
Eight essays trace seminal ideas about the foundations of geometry that led to the development of Einstein's general theory of relativity. This is the only English-language collection of these important papers, some of which are extremely hard to find. Contributors include Helmholtz, Klein, Clifford, Poincaré, and Cartan.
Riemannian Topology and Structures on Manifolds results from a similarly entitled conference held on the occasion of Charles P. Boyer’s 65th birthday. The various contributions to this volume discuss recent advances in the areas of positive sectional curvature, Kähler and Sasakian geometry, and their interrelation to mathematical physics, especially M and superstring theory. Focusing on these fundamental ideas, this collection presents review articles, original results, and open problems of interest.
This is a collection of research papers published in various mathematical journals by friends, colleagues and former students of Professor Buchin Su in honor ofhis 80th birthday and 50th year of educational work.Professor Su was born in 1902 in Pingyang County, Zhejiang Province, People's Republic of China. He received the degree of Bachelor of Science inmathematics from Tohoku University, Sendai, Japan in 1927, and the degree ofDoctor of Science from the same university in 1931. After returning to Chinain 1931, he first taught at Zhejiang University in Hangzhou until 1952 when thewhole College of Science of Zhejiang University was merged into Fudan Universityin Shanghai. During his 50 years of educational work besides teaching, he alsohas taken up various administrative positions serving as Chairman, Dean, VicePresident and finally the President of Fudan University in 1978
Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.
Riemannian Holonomy Groups and Calibrated Geometry covers an exciting and active area of research at the crossroads of several different fields in mathematics and physics. Drawing on the author's previous work the text has been written to explain the advanced mathematics involved simply and clearly to graduate students in both disciplines.
A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal transformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing torsion of the Biquard connection are explicitly described. A "3-Hamiltonian form" of infinitesimal conformal automorphisms of quaternionic contact structures is presented.