Empirical Asset Pricing

Empirical Asset Pricing

Author: Wayne Ferson

Publisher: MIT Press

Published: 2019-03-12

Total Pages: 497

ISBN-13: 0262039370

DOWNLOAD EBOOK

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.


Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Author: El Bachir Boukherouaa

Publisher: International Monetary Fund

Published: 2021-10-22

Total Pages: 35

ISBN-13: 1589063953

DOWNLOAD EBOOK

This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.


Agent-Based Simulation: From Modeling Methodologies to Real-World Applications

Agent-Based Simulation: From Modeling Methodologies to Real-World Applications

Author: Takao Terano

Publisher: Springer Science & Business Media

Published: 2006-06-18

Total Pages: 259

ISBN-13: 4431269258

DOWNLOAD EBOOK

Agent-based modeling/simulation is an emerging field that uses bottom-up and experimental analysis in the social sciences. Selected research from that presented at the Third International Workshop on Agent-Based Approaches in Economic and Social Complex Systems 2004, held in May 2004 in Kyoto, Japan, is included in this book. The aim of the workshop was to employ the bottom-up approach to social and economic problems by modeling, simulation, and analysis using a software agent. This research area is an emerging interdisciplinary field among the social sciences and computer science, attracting broad attention because it introduces a simulation-based experimental approach to problems that are becoming increasingly complex in an era of globalization and innovation in information technology. The state-of-the-art research and findings presented in this book will be indispensable tools for anyone involved in this rapidly growing discipline.


Machine Learning in Asset Pricing

Machine Learning in Asset Pricing

Author: Stefan Nagel

Publisher: Princeton University Press

Published: 2021-05-11

Total Pages: 156

ISBN-13: 0691218706

DOWNLOAD EBOOK

A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation.


Social Simulation: Technologies, Advances and New Discoveries

Social Simulation: Technologies, Advances and New Discoveries

Author: Edmonds, Bruce

Publisher: IGI Global

Published: 2007-08-31

Total Pages: 402

ISBN-13: 1599045249

DOWNLOAD EBOOK

"This book, a reference survey of social simulation work comprehensively collects the most exciting developments in the field. Drawing research contributions from a vibrant community of experts on social simulation, it provides a set of unique and innovative approaches, ranging from agent-based modeling to empirically based simulations, as well as applications in business, governmental, scientific, and other contexts"--Provided by publisher.


Nonlinear Valuation and Non-Gaussian Risks in Finance

Nonlinear Valuation and Non-Gaussian Risks in Finance

Author: Dilip B. Madan

Publisher: Cambridge University Press

Published: 2022-02-03

Total Pages: 284

ISBN-13: 100900249X

DOWNLOAD EBOOK

What happens to risk as the economic horizon goes to zero and risk is seen as an exposure to a change in state that may occur instantaneously at any time? All activities that have been undertaken statically at a fixed finite horizon can now be reconsidered dynamically at a zero time horizon, with arrival rates at the core of the modeling. This book, aimed at practitioners and researchers in financial risk, delivers the theoretical framework and various applications of the newly established dynamic conic finance theory. The result is a nonlinear non-Gaussian valuation framework for risk management in finance. Risk-free assets disappear and low risk portfolios must pay for their risk reduction with negative expected returns. Hedges may be constructed to enhance value by exploiting risk interactions. Dynamic trading mechanisms are synthesized by machine learning algorithms. Optimal exposures are designed for option positioning simultaneously across all strikes and maturities.


Financial Econometrics Modeling: Market Microstructure, Factor Models and Financial Risk Measures

Financial Econometrics Modeling: Market Microstructure, Factor Models and Financial Risk Measures

Author: G. Gregoriou

Publisher: Springer

Published: 2010-12-13

Total Pages: 277

ISBN-13: 0230298109

DOWNLOAD EBOOK

This book proposes new methods to build optimal portfolios and to analyze market liquidity and volatility under market microstructure effects, as well as new financial risk measures using parametric and non-parametric techniques. In particular, it investigates the market microstructure of foreign exchange and futures markets.


Machine Learning in Asset Pricing

Machine Learning in Asset Pricing

Author: Stefan Nagel

Publisher: Princeton University Press

Published: 2021-05-11

Total Pages: 168

ISBN-13: 0691218714

DOWNLOAD EBOOK

A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation.


Financial Risk Management and Modeling

Financial Risk Management and Modeling

Author: Constantin Zopounidis

Publisher: Springer Nature

Published: 2021-09-13

Total Pages: 480

ISBN-13: 3030666913

DOWNLOAD EBOOK

Risk is the main source of uncertainty for investors, debtholders, corporate managers and other stakeholders. For all these actors, it is vital to focus on identifying and managing risk before making decisions. The success of their businesses depends on the relevance of their decisions and consequently, on their ability to manage and deal with the different types of risk. Accordingly, the main objective of this book is to promote scientific research in the different areas of risk management, aiming at being transversal and dealing with different aspects of risk management related to corporate finance as well as market finance. Thus, this book should provide useful insights for academics as well as professionals to better understand and assess the different types of risk.