Equivariant Degree Theory

Equivariant Degree Theory

Author: Jorge Ize

Publisher: Walter de Gruyter

Published: 2008-08-22

Total Pages: 385

ISBN-13: 3110200023

DOWNLOAD EBOOK

This book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties are derived. The next part is devoted to the study of equivariant homotopy groups of spheres and to the classification of equivariant maps in the case of abelian actions. These groups are explicitely computed and the effects of symmetry breaking, products and composition are thorougly studied. The last part deals with computations of the equivariant index of an isolated orbit and of an isolated loop of stationary points. Here differential equations in a variety of situations are considered: symmetry breaking, forcing, period doubling, twisted orbits, first integrals, gradients etc. Periodic solutions of Hamiltonian systems, in particular spring-pendulum systems, are studied as well as Hopf bifurcation for all these situations.


Degree Theory for Equivariant Maps, the General $S^1$-Action

Degree Theory for Equivariant Maps, the General $S^1$-Action

Author: Jorge Ize

Publisher: American Mathematical Soc.

Published: 1992

Total Pages: 194

ISBN-13: 0821825429

DOWNLOAD EBOOK

In this paper, we consider general [italic]S1-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S1-degree is given by the usual degree of the invariant part, while for one parameter [italic]S1-maps one has an integer for each isotropy subgroup different from [italic]S1. In particular we recover all the [italic]S1-degrees introduced in special cases by other authors and we are also able to interpret period doubling results on the basis of our [italic]S1-degree. The applications concern essentially periodic solutions of ordinary differential equations.


Equivariant Degree Theory

Equivariant Degree Theory

Author: Jorge Ize

Publisher: Walter de Gruyter

Published: 2003

Total Pages: 384

ISBN-13: 3110175509

DOWNLOAD EBOOK

This book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties are derived. The next part is devoted to the study of equivariant homotopy groups of spheres and to the classification of equivariant maps in the case of abelian actions. These groups are explicitely computed and the effects of symmetry breaking, products and composition are thorougly studied. The last part deals with computations of the equivariant index of an isolated orbit and of an isolated loop of stationary points. Here differential equations in a variety of situations are considered: symmetry breaking, forcing, period doubling, twisted orbits, first integrals, gradients etc. Periodic solutions of Hamiltonian systems, in particular spring-pendulum systems, are studied as well as Hopf bifurcation for all these situations.


Mapping Degree Theory

Mapping Degree Theory

Author: Enrique Outerelo

Publisher: American Mathematical Soc.

Published: 2009-11-12

Total Pages: 258

ISBN-13: 0821849158

DOWNLOAD EBOOK

This textbook treats the classical parts of mapping degree theory, with a detailed account of its history traced back to the first half of the 18th century. After a historical first chapter, the remaining four chapters develop the mathematics. An effort is made to use only elementary methods, resulting in a self-contained presentation. Even so, the book arrives at some truly outstanding theorems: the classification of homotopy classes for spheres and the Poincare-Hopf Index Theorem, as well as the proofs of the original formulations by Cauchy, Poincare, and others. Although the mapping degree theory you will discover in this book is a classical subject, the treatment is refreshing for its simple and direct style. The straightforward exposition is accented by the appearance of several uncommon topics: tubular neighborhoods without metrics, differences between class 1 and class 2 mappings, Jordan Separation with neither compactness nor cohomology, explicit constructions of homotopy classes of spheres, and the direct computation of the Hopf invariant of the first Hopf fibration. The book is suitable for a one-semester graduate course. There are 180 exercises and problems of different scope and difficulty.


Fixed Point Theory

Fixed Point Theory

Author: Andrzej Granas

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 706

ISBN-13: 038721593X

DOWNLOAD EBOOK

The theory of Fixed Points is one of the most powerful tools of modern mathematics. This book contains a clear, detailed and well-organized presentation of the major results, together with an entertaining set of historical notes and an extensive bibliography describing further developments and applications. From the reviews: "I recommend this excellent volume on fixed point theory to anyone interested in this core subject of nonlinear analysis." --MATHEMATICAL REVIEWS


Handbook of Differential Equations: Ordinary Differential Equations

Handbook of Differential Equations: Ordinary Differential Equations

Author: Flaviano Battelli

Publisher: Elsevier

Published: 2008-08-19

Total Pages: 719

ISBN-13: 0080559468

DOWNLOAD EBOOK

This handbook is the fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ordinary differential equations, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience. - Covers a variety of problems in ordinary differential equations - Pure mathematical and real-world applications - Written for mathematicians and scientists of many related fields


Handbook of Topological Fixed Point Theory

Handbook of Topological Fixed Point Theory

Author: Robert F. Brown

Publisher: Springer Science & Business Media

Published: 2005-12-05

Total Pages: 966

ISBN-13: 1402032226

DOWNLOAD EBOOK

This book is the first in the world literature presenting all new trends in topological fixed point theory. Until now all books connected to the topological fixed point theory were devoted only to some parts of this theory. This book will be especially useful for post-graduate students and researchers interested in the fixed point theory, particularly in topological methods in nonlinear analysis, differential equations and dynamical systems. The content is also likely to stimulate the interest of mathematical economists, population dynamics experts as well as theoretical physicists exploring the topological dynamics.


Theory of Degrees with Applications to Bifurcations and Differential Equations

Theory of Degrees with Applications to Bifurcations and Differential Equations

Author: Wieslaw Krawcewicz

Publisher: Wiley-Interscience

Published: 1997-02-05

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK

This book provides an introduction to degree theory and its applications to nonlinear differential equations. It uses an applications-oriented to address functional analysis, general topology and differential equations and offers a unified treatment of the classical Brouwer degree, the recently developed S?1-degree and the Dold-Ulrich degree for equivalent mappings and bifurcation problems. It integrates two seemingly disparate concepts, beginning with review material before shifting to classical theory and advanced application techniques.