Transport Analysis

Transport Analysis

Author: Daniel Hershey

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 358

ISBN-13: 1461344840

DOWNLOAD EBOOK

It has been my experience in teaching graduate and undergraduate courses that if the students are conversant with the pertinent mathematical proce dures, and can "think mathematically," there is almost no limit to their comprehension. Most courses that are considered difficult by students are either poorly taught or require a degree of mathematical sophistication that the students do not possess. In Transport Analysis, J have culled some basic momentum transport (fluid flow) and mass transport phenomena and explicitly revealed the derivation of the governing equations. There is no mystery, no omitted steps or "it can be shown" phrases that are usually the bane of the student. There are chapters that review basic calculus, vector and matrix concepts, Laplace transform operations, and finite difference calculus. Ordinary dif ferential and partial differential equations are derived and solved. This book is intended for undergraduates and graduate students in engineering, chemistry, physics, and even biology and medicine. It is also intended for my non-engineering colleagues with whom I have collaborated during our cooperative research in the life sciences. If they knew what is contained in Transport Analysis, they probably wouldn't need me. v Acknowledgments To Barbara and Michael, who helped keep me alert, happy, and ful filled. To Barbara, who deserves belated thanks for doing the drawings in E1'eryday Science. To Anne Hagedorn, thanks for doing some of the typing. To Gerry Denterlein, thanks for keeping tabs on the drawings.


Transport Phenomena

Transport Phenomena

Author: R. Byron Bird

Publisher: John Wiley & Sons

Published: 2006-12-11

Total Pages: 935

ISBN-13: 0470115394

DOWNLOAD EBOOK

Transport Phenomena has been revised to include deeper and more extensive coverage of heat transfer, enlarged discussion of dimensional analysis, a new chapter on flow of polymers, systematic discussions of convective momentum,and energy. Topics also include mass transport, momentum transport and energy transport, which are presented at three different scales: molecular, microscopic and macroscopic. If this is your first look at Transport Phenomena you'll quickly learn that its balanced introduction to the subject of transport phenomena is the foundation of its long-standing success.


Computational Modeling for Fluid Flow and Interfacial Transport

Computational Modeling for Fluid Flow and Interfacial Transport

Author: Wei Shyy

Publisher: Courier Corporation

Published: 2014-06-10

Total Pages: 529

ISBN-13: 0486150011

DOWNLOAD EBOOK

Practical applications and examples highlight this treatment of computational modeling for handling complex flowfields. A reference for researchers and graduate students of many different backgrounds, it also functions as a text for learning essential computation elements. Drawing upon his own research, the author addresses both macroscopic and microscopic features. He begins his three-part treatment with a survey of the basic concepts of finite difference schemes for solving parabolic, elliptic, and hyperbolic partial differential equations. The second part concerns issues related to computational modeling for fluid flow and transport phenomena. In addition to a focus on pressure-based methods, this section also discusses practical engineering applications. The third and final part explores the transport processes involving interfacial dynamics, particularly those influenced by phase change, gravity, and capillarity. Case studies, employing previously discussed methods, demonstrate the interplay between the fluid and thermal transport at macroscopic scales and their interaction with the interfacial transport.


Transport Coefficients of Fluids

Transport Coefficients of Fluids

Author: Byung Chan Eu

Publisher: Springer Science & Business Media

Published: 2006-09-08

Total Pages: 408

ISBN-13: 3540282165

DOWNLOAD EBOOK

In this monograph, the density ?uctuation theory of transport coe?cients of simple and complex liquids is described together with the kinetic theory of liquids, the generic van der Waals equation of state, and the modi?ed free volume theory. The latter two theories are integral parts of the density ?- tuation theory, which enables us to calculate the density and temperature dependence of transport coe?cients of liquids from intermolecular forces. The terms nanoscience and bioscience are the catch phrases currently in fashion in science. It seems that much of the fundamentals remaining unsolved or poorly understood in the science of condensed matter has been overshadowed by the frenzy over the more glamorous disciplines of the former, shunned by novices, and are on the verge of being forgotten. The transport coe?cients of liquids and gases and related thermophysical properties of matter appear to be one such area in the science of macroscopic properties of molecular systems and statisticalmechanicsofcondensedmatter. Evennano-andbiomaterials,h- ever, cannot be fully and appropriately understood without ?rm grounding and foundations in the macroscopic and molecular theories of transport pr- ertiesandrelatedthermophysicalpropertiesofmatterinthecondensedphase. Oneisstilldealingwithsystemsmadeupofnotafewparticlesbutamultitude of them, often too many to count, to call them few-body problems that can be understoodwithoutthehelpofstatisticalmechanicsandmacroscopicphysics. In the density ?uctuation theory of transport coe?cients, the basic approach taken is quite di?erent from the approaches taken in the conventional kinetic theories of gases and liquids.


Transport Phenomena in Newtonian Fluids - A Concise Primer

Transport Phenomena in Newtonian Fluids - A Concise Primer

Author: Per Olsson

Publisher: Springer Science & Business Media

Published: 2013-08-30

Total Pages: 107

ISBN-13: 3319013092

DOWNLOAD EBOOK

This short primer provides a concise and tutorial-style introduction to transport phenomena in Newtonian fluids , in particular the transport of mass, energy and momentum. The reader will find detailed derivations of the transport equations for these phenomena, as well as selected analytical solutions to the transport equations in some simple geometries. After a brief introduction to the basic mathematics used in the text, Chapter 2, which deals with momentum transport, presents a derivation of the Navier-Stokes-Duhem equation describing the basic flow in a Newtonian fluid. Also provided at this stage are the derivations of the Bernoulli equation, the pressure equation and the wave equation for sound waves. The boundary layer, turbulent flow and flow separation are briefly reviewed. Chapter 3, which addresses energy transport caused by thermal conduction and convection, examines a derivation of the heat transport equation. Finally, Chapter 4, which focuses on mass transport caused by diffusion and convection, discusses a derivation of the mass transport equation.


Analytical Solutions for Transport Processes

Analytical Solutions for Transport Processes

Author: Günter Brenn

Publisher: Springer

Published: 2016-07-26

Total Pages: 306

ISBN-13: 3662514230

DOWNLOAD EBOOK

This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field.


Transport Phenomena

Transport Phenomena

Author: Estéban Saatdjian

Publisher: John Wiley & Sons

Published: 2000-11-08

Total Pages: 440

ISBN-13:

DOWNLOAD EBOOK

This invaluable text, provides a much-needed overview of both the theoretical development, as well as appropriate numerical solutions, for all aspects of transport phenomena. It contains a basic introduction to many aspects of fluid mechanics, heat transfer and mass transfer, and the conservation equations for mass, energy and momentum are discussed with reference to engineering applications. Heat transfer by conduction, radiation, natural and forced convection is studied, as well as mass transfer and incompressible fluid mechanics. The second part of the book deals with numerical methods used to solve the problems encountered earlier. The basic concepts of finite difference and finite volume methods are presented. Other subjects usually covered in mathematical textbooks such as vector and tensor analysis, Laplace transforms, and Runge-Kutta methods are discussed in the Appendices. * Offers comprehensive coverage of both transport phenomena and numerical and analytical solutions to the problems. * Includes comprehensive coverage of numerical techniques. * Provides real-life problems and solutions, which are vital to the understanding and implementation of applications. This work will be welcomed not only by senior and graduate students in mechanical, aeronautical and chemical engineering, but also for engineers practising in these fields.


Transport Processes at Fluidic Interfaces

Transport Processes at Fluidic Interfaces

Author: Dieter Bothe

Publisher: Birkhäuser

Published: 2017-07-13

Total Pages: 677

ISBN-13: 3319566024

DOWNLOAD EBOOK

There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplinary research approach combining Applied Analysis, Numerical Mathematics, Interface Physics and Chemistry, as well as relevant research areas in the Engineering Sciences. The contributions originated from the joint interdisciplinary research projects in the DFG Priority Programme SPP 1506 “Transport Processes at Fluidic Interfaces.”