Equalization Control for Lithium-ion Batteries

Equalization Control for Lithium-ion Batteries

Author: Jian Chen

Publisher: Springer Nature

Published: 2023-04-05

Total Pages: 197

ISBN-13: 9819902207

DOWNLOAD EBOOK

This book provides readers with sufficient insight into battery equalization control technologies from both theoretical and engineering perspectives. Distinguished from most of the existing works that focus on the hardware design of active equalizers, this book intends to comprehensively introduce equalization control strategies for lithium-ion battery packs. The validity and reliability of the control strategies in this book have been verified by theory and experiments. This book summarizes the battery equalization technologies from the equalization system to the equalization control algorithm. From this book, readers who are interested in the area of battery management can have a broad view of cell equalization technologies. Readers who have no experience in the battery management area can learn the basic concept, analysis methods, and design principles of the cell equalization system for battery packs. Even for the readers who are occupied in this area, this book provides rich knowledge on engineering applications and future trends of battery equalization control.


Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles

Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles

Author: Jiuchun Jiang

Publisher: John Wiley & Sons

Published: 2015-05-18

Total Pages: 296

ISBN-13: 1118414780

DOWNLOAD EBOOK

A theoretical and technical guide to the electric vehicle lithium-ion battery management system Covers the timely topic of battery management systems for lithium batteries. After introducing the problem and basic background theory, it discusses battery modeling and state estimation. In addition to theoretical modeling it also contains practical information on charging and discharging control technology, cell equalisation and application to electric vehicles, and a discussion of the key technologies and research methods of the lithium-ion power battery management system. The author systematically expounds the theory knowledge included in the lithium-ion battery management systems and its practical application in electric vehicles, describing the theoretical connotation and practical application of the battery management systems. Selected graphics in the book are directly derived from the real vehicle tests. Through comparative analysis of the different system structures and different graphic symbols, related concepts are clear and the understanding of the battery management systems is enhanced. Contents include: key technologies and the difficulty point of vehicle power battery management system; lithium-ion battery performance modeling and simulation; the estimation theory and methods of the lithium-ion battery state of charge, state of energy, state of health and peak power; lithium-ion battery charge and discharge control technology; consistent evaluation and equalization techniques of the battery pack; battery management system design and application in electric vehicles. A theoretical and technical guide to the electric vehicle lithium-ion battery management system Using simulation technology, schematic diagrams and case studies, the basic concepts are described clearly and offer detailed analysis of battery charge and discharge control principles Equips the reader with the understanding and concept of the power battery, providing a clear cognition of the application and management of lithium ion batteries in electric vehicles Arms audiences with lots of case studies Essential reading for Researchers and professionals working in energy technologies, utility planners and system engineers.


Advances in Battery Manufacturing, Service, and Management Systems

Advances in Battery Manufacturing, Service, and Management Systems

Author: Jingshan Li

Publisher: John Wiley & Sons

Published: 2016-10-24

Total Pages: 418

ISBN-13: 1119056497

DOWNLOAD EBOOK

Addresses the methodology and theoretical foundation of battery manufacturing, service and management systems (BM2S2), and discusses the issues and challenges in these areas This book brings together experts in the field to highlight the cutting edge research advances in BM2S2 and to promote an innovative integrated research framework responding to the challenges. There are three major parts included in this book: manufacturing, service, and management. The first part focuses on battery manufacturing systems, including modeling, analysis, design and control, as well as economic and risk analyses. The second part focuses on information technology’s impact on service systems, such as data-driven reliability modeling, failure prognosis, and service decision making methodologies for battery services. The third part addresses battery management systems (BMS) for control and optimization of battery cells, operations, and hybrid storage systems to ensure overall performance and safety, as well as EV management. The contributors consist of experts from universities, industry research centers, and government agency. In addition, this book: Provides comprehensive overviews of lithium-ion battery and battery electrical vehicle manufacturing, as well as economic returns and government support Introduces integrated models for quality propagation and productivity improvement, as well as indicators for bottleneck identification and mitigation in battery manufacturing Covers models and diagnosis algorithms for battery SOC and SOH estimation, data-driven prognosis algorithms for predicting the remaining useful life (RUL) of battery SOC and SOH Presents mathematical models and novel structure of battery equalizers in battery management systems (BMS) Reviews the state of the art of battery, supercapacitor, and battery-supercapacitor hybrid energy storage systems (HESSs) for advanced electric vehicle applications Advances in Battery Manufacturing, Services, and Management Systems is written for researchers and engineers working on battery manufacturing, service, operations, logistics, and management. It can also serve as a reference for senior undergraduate and graduate students interested in BM2S2.


Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles

Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles

Author: Jiuchun Jiang

Publisher: John Wiley & Sons

Published: 2015-02-18

Total Pages: 296

ISBN-13: 1118414810

DOWNLOAD EBOOK

A theoretical and technical guide to the electric vehicle lithium-ion battery management system Covers the timely topic of battery management systems for lithium batteries. After introducing the problem and basic background theory, it discusses battery modeling and state estimation. In addition to theoretical modeling it also contains practical information on charging and discharging control technology, cell equalisation and application to electric vehicles, and a discussion of the key technologies and research methods of the lithium-ion power battery management system. The author systematically expounds the theory knowledge included in the lithium-ion battery management systems and its practical application in electric vehicles, describing the theoretical connotation and practical application of the battery management systems. Selected graphics in the book are directly derived from the real vehicle tests. Through comparative analysis of the different system structures and different graphic symbols, related concepts are clear and the understanding of the battery management systems is enhanced. Contents include: key technologies and the difficulty point of vehicle power battery management system; lithium-ion battery performance modeling and simulation; the estimation theory and methods of the lithium-ion battery state of charge, state of energy, state of health and peak power; lithium-ion battery charge and discharge control technology; consistent evaluation and equalization techniques of the battery pack; battery management system design and application in electric vehicles. A theoretical and technical guide to the electric vehicle lithium-ion battery management system Using simulation technology, schematic diagrams and case studies, the basic concepts are described clearly and offer detailed analysis of battery charge and discharge control principles Equips the reader with the understanding and concept of the power battery, providing a clear cognition of the application and management of lithium ion batteries in electric vehicles Arms audiences with lots of case studies Essential reading for Researchers and professionals working in energy technologies, utility planners and system engineers.


Lithium-Ion Batteries: Basics and Applications

Lithium-Ion Batteries: Basics and Applications

Author: Reiner Korthauer

Publisher: Springer

Published: 2018-08-07

Total Pages: 417

ISBN-13: 3662530716

DOWNLOAD EBOOK

The handbook focuses on a complete outline of lithium-ion batteries. Just before starting with an exposition of the fundamentals of this system, the book gives a short explanation of the newest cell generation. The most important elements are described as negative / positive electrode materials, electrolytes, seals and separators. The battery disconnect unit and the battery management system are important parts of modern lithium-ion batteries. An economical, faultless and efficient battery production is a must today and is represented with one chapter in the handbook. Cross-cutting issues like electrical, chemical, functional safety are further topics. Last but not least standards and transportation themes are the final chapters of the handbook. The different topics of the handbook provide a good knowledge base not only for those working daily on electrochemical energy storage, but also to scientists, engineers and students concerned in modern battery systems.


Battery System Modeling

Battery System Modeling

Author: Shunli Wang

Publisher: Elsevier

Published: 2021-06-23

Total Pages: 356

ISBN-13: 0323904335

DOWNLOAD EBOOK

Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage. Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates. - Explains how to model battery systems, including equivalent, electrical circuit and electrochemical nernst modeling - Includes comprehensive coverage of battery state estimation methods, including state of charge estimation, energy prediction, power evaluation and health estimation - Provides a dedicated chapter on active control strategies


Battery Management Systems

Battery Management Systems

Author: H.J. Bergveld

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 311

ISBN-13: 9401708436

DOWNLOAD EBOOK

Battery Management Systems - Design by Modelling describes the design of Battery Management Systems (BMS) with the aid of simulation methods. The basic tasks of BMS are to ensure optimum use of the energy stored in the battery (pack) that powers a portable device and to prevent damage inflicted on the battery (pack). This becomes increasingly important due to the larger power consumption associated with added features to portable devices on the one hand and the demand for longer run times on the other hand. In addition to explaining the general principles of BMS tasks such as charging algorithms and State-of-Charge (SoC) indication methods, the book also covers real-life examples of BMS functionality of practical portable devices such as shavers and cellular phones. Simulations offer the advantage over measurements that less time is needed to gain knowledge of a battery's behaviour in interaction with other parts in a portable device under a wide variety of conditions. This knowledge can be used to improve the design of a BMS, even before a prototype of the portable device has been built. The battery is the central part of a BMS and good simulation models that can be used to improve the BMS design were previously unavailable. Therefore, a large part of the book is devoted to the construction of simulation models for rechargeable batteries. With the aid of several illustrations it is shown that design improvements can indeed be realized with the presented battery models. Examples include an improved charging algorithm that was elaborated in simulations and verified in practice and a new SoC indication system that was developed showing promising results. The contents of Battery Management Systems - Design by Modelling is based on years of research performed at the Philips Research Laboratories. The combination of basic and detailed descriptions of battery behaviour both in chemical and electrical terms makes this book truly multidisciplinary. It can therefore be read both by people with an (electro)chemical and an electrical engineering background.


Reuse and Recycling of Lithium-Ion Power Batteries

Reuse and Recycling of Lithium-Ion Power Batteries

Author: Guangjin Zhao

Publisher: John Wiley & Sons

Published: 2017-05-16

Total Pages: 437

ISBN-13: 1119321875

DOWNLOAD EBOOK

A comprehensive guide to the reuse and recycling of lithium-ion power batteries—fundamental concepts, relevant technologies, and business models Reuse and Recycling of Lithium-Ion Power Batteries explores ways in which retired lithium ion batteries (LIBs) can create long-term, stable profits within a well-designed business operation. Based on a large volume of experimental data collected in the author’s lab, it demonstrates how LIBs reuse can effectively cut the cost of Electric Vehicles (EVs) by extending the service lifetime of the batteries. In addition to the cost benefits, Dr. Guangjin Zhao discusses how recycling and reuse can significantly reduce environmental and safety hazards, thus complying with the core principles of environment protection: recycle, reuse and reduce. Offering coverage of both the fundamental theory and applied technologies involved in LIB reuse and recycling, the book's contents are based on the simulated and experimental results of a hybrid micro-grid demonstration project and recycling system. In the opening section on battery reuse, Dr. Zhao introduces key concepts, including battery dismantling, sorting, second life prediction, re-packing, system integration and relevant technologies. He then builds on that foundation to explore advanced topics, such as resource recovery, harmless treatment, secondary pollution control, and zero emissions technologies. Reuse and Recycling of Lithium-Ion Power Batteries: • Provides timely, in-depth coverage of both the reuse and recycling aspects of lithium-ion batteries • Is based on extensive simulation and experimental research performed by the author, as well as an extensive review of the current literature on the subject • Discusses the full range of critical issues, from battery dismantling and sorting to secondary pollution control and zero emissions technologies • Includes business models and strategies for secondary use and recycling of power lithium-ion batteries Reuse and Recycling of Lithium-Ion Power Batteries is an indispensable resource for researchers, engineers, and business professionals who work in industries involved in energy storage systems and battery recycling, especially with the manufacture and use (and reuse) of lithium-ion batteries. It is also a valuable supplementary text for advanced undergraduates and postgraduate students studying energy storage, battery recycling, and battery management.


Multidimensional Lithium-Ion Battery Status Monitoring

Multidimensional Lithium-Ion Battery Status Monitoring

Author: Shunli Wang

Publisher: CRC Press

Published: 2022-12-28

Total Pages: 333

ISBN-13: 1000799603

DOWNLOAD EBOOK

Multidimensional Lithium-Ion Battery Status Monitoring focuses on equivalent circuit modeling, parameter identification, and state estimation in lithium-ion battery power applications. It explores the requirements of high-power lithium-ion batteries for new energy vehicles and systematically describes the key technologies in core state estimation based on battery equivalent modeling and parameter identification methods of lithium-ion batteries, providing a technical reference for the design and application of power lithium-ion battery management systems. Reviews Li-ion battery characteristics and applications. Covers battery equivalent modeling, including electrical circuit modeling and parameter identification theory Discusses battery state estimation methods, including state of charge estimation, state of energy prediction, state of power evaluation, state of health estimation, and cycle life estimation Introduces equivalent modeling and state estimation algorithms that can be applied to new energy measurement and control in large-scale energy storage Includes a large number of examples and case studies This book has been developed as a reference for researchers and advanced students in energy and electrical engineering.