Environmental Regulation of Microbial Metabolism contains the proceedings of the Federation of European Microbiological Societies Symposium held in Pushchino, USSR, on June 1-7, 1983. The symposium provided a forum for reviewing the environmental regulation of the metabolism of autotrophic and heterotrophic microorganisms; regulation of the biogenesis of cell walls and other structures in prokaryotic and eukaryotic microorganisms; and regulation of the secretion of macromolecules and transport of ions and solutes across microbial membranes. Comprised of 52 chapters, this book begins with an overview of some aspects of environmental regulation of microbial phosphorus metabolism, followed by a discussion on the role of covalent interconversion of enzymes in the regulation of microbial metabolism. Subsequent chapters explore the role and regulation of inorganic pyrophosphatase in bacteria; the central metabolism of pseudomonads degrading xenobiotics; the role of nickel enzymes in anaerobic metabolism; and the oxidation of aromatic compounds by microalgae. The book also considers carbon metabolism in phototrophic bacteria under different conditions of growth, along with the transport of solutes and metabolites in prokaryotes and eukaryotes. This monograph will be helpful to a wide range of specialists in the fields of biochemistry, physiology, molecular biology, and biotechnology.
Recent determination of genome sequences for a wide range of bacteria has made in-depth knowledge of prokaryotic metabolic function essential in order to give biochemical, physiological, and ecological meaning to the genomic information. Clearly describing the important metabolic processes that occur in prokaryotes under different conditions and in different environments, this advanced text provides an overview of the key cellular processes that determine bacterial roles in the environment, biotechnology, and human health. Prokaryotic structure is described as well as the means by which nutrients are transported into cells across membranes. Glucose metabolism through glycolysis and the TCA cycle are discussed, as well as other trophic variations found in prokaryotes, including the use of organic compounds, anaerobic fermentation, anaerobic respiratory processes, and photosynthesis. The regulation of metabolism through control of gene expression and control of the activity of enzymes is also covered, as well as survival mechanisms used under starvation conditions.
This concise yet comprehensive text surveys the field of bacterial metabolism in terms useful to students and researchers. Emphasis is on those metabolic reactions occurring only in bacteria. Thus, the book describes in detail the energy metabolism of the various groups of bacteria. In addition, it examines pathways used by bacteria for the degradation of organic compounds, the synthesis of cellular constituents, the regulation of bacterial metabolism and the fixation of molecular nitrogen.
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Xenobiotic compounds including pesticides, nitrophenols, pyridine, polycyclic aromatic compounds and polychlorinated biphenyls are widely spread in environment due to anthropogenic activities. Most of them are highly toxic to living beings due to their mutagenic and carcinogenic properties. Therefore, the removal of these compounds from environment is an essential step for environmental sustainability. Microbial remediation has emerged as an effective technology for degradation of these xenobiotic compounds as microorganisms have unique ability to utilize these compounds as their sole source of carbon and energy. The primary goal of this book is to provide detailed information of microbial degradation of many xenobiotic compounds in various microorganisms.
This revealing book details recent developments in the study of the relationship between sulfur and the microbial agents that affect its metabolism. In recent years, new methods have been applied to study the biochemistry and molecular biology of reactions of the global sulfur cycle, the microorganisms involved and their physiology, metabolism and ecology. These activities have uncovered fascinating new insights for the understanding of aerobic and anaerobic sulfur metabolism.
A great number of diverse microorganisms inhabit the human body and are collectively referred to as the human microbiome. Until recently, the role of the human microbiome in maintaining human health was not fully appreciated. Today, however, research is beginning to elucidate associations between perturbations in the human microbiome and human disease and the factors that might be responsible for the perturbations. Studies have indicated that the human microbiome could be affected by environmental chemicals or could modulate exposure to environmental chemicals. Environmental Chemicals, the Human Microbiome, and Health Risk presents a research strategy to improve our understanding of the interactions between environmental chemicals and the human microbiome and the implications of those interactions for human health risk. This report identifies barriers to such research and opportunities for collaboration, highlights key aspects of the human microbiome and its relation to health, describes potential interactions between environmental chemicals and the human microbiome, reviews the risk-assessment framework and reasons for incorporating chemicalâ€"microbiome interactions.
This book provides useful information on microbial physiology and metabolism. The key aspects covered are prokaryotic diversity, growth physiology, basic metabolic pathways and their regulation, metabolic diversity with details of various unique pathways. Another focus area is stress physiology with details on varying environmental stresses, signal transduction, adaptation and survival. For instructional purposes, the book provides case studies, interesting facts, techniques etc. which help in showcasing the inter-disciplinary nature and bridge the gap between various aspects of applied microbiology.
The 21st century has witnessed a complete revolution in the understanding and description of bacteria in eco- systems and microbial assemblages, and how they are regulated by complex interactions among microbes, hosts, and environments. The human organism is no longer considered a monolithic assembly of tissues, but is instead a true ecosystem composed of human cells, bacteria, fungi, algae, and viruses. As such, humans are not unlike other complex ecosystems containing microbial assemblages observed in the marine and earth environments. They all share a basic functional principle: Chemical communication is the universal language that allows such groups to properly function together. These chemical networks regulate interactions like metabolic exchange, antibiosis and symbiosis, and communication. The National Academies of Sciences, Engineering, and Medicine's Chemical Sciences Roundtable organized a series of four seminars in the autumn of 2016 to explore the current advances, opportunities, and challenges toward unveiling this "chemical dark matter" and its role in the regulation and function of different ecosystems. The first three focused on specific ecosystemsâ€"earth, marine, and humanâ€"and the last on all microbiome systems. This publication summarizes the presentations and discussions from the seminars.