Environmental Econometrics Using Stata

Environmental Econometrics Using Stata

Author: Christopher F. Baum

Publisher: Stata Press

Published: 2021-05-10

Total Pages: 416

ISBN-13: 9781597183550

DOWNLOAD EBOOK

Aspects of environmental change are some of the greatest challenges faced by policymakers today. The key issues addressed by environmental science are often empirical, and in many instances very detailed, sizable datasets are available. Researchers in this field should have a solid understanding of the econometric tools best suited for analysis of these data. While complex and expensive physical models of the environment exist, it is becoming increasingly clear that reduced-form econometric models have an important role to play in modeling environmental phenomena. In short, successful environmental modeling does not necessarily require a structural model, but the econometric methods underlying a reduced-form approach must be competently executed. Environmental Econometrics Using Stata provides an important starting point for this journey by presenting a broad range of applied econometric techniques for environmental econometrics and illustrating how they can be applied in Stata. The emphasis is not only on how to formulate and fit models in Stata but also on the need to use a wide range of diagnostic tests in order to validate the results of estimation and subsequent policy conclusions. This focus on careful, reproducible research should be appreciated by academic and non-academic researchers who are seeking to produce credible, defensible conclusions about key issues in environmental science.


An Introduction to Modern Econometrics Using Stata

An Introduction to Modern Econometrics Using Stata

Author: Christopher F. Baum

Publisher: Stata Press

Published: 2006-08-17

Total Pages: 362

ISBN-13: 1597180130

DOWNLOAD EBOOK

Integrating a contemporary approach to econometrics with the powerful computational tools offered by Stata, this introduction illustrates how to apply econometric theories used in modern empirical research using Stata. The author emphasizes the role of method-of-moments estimators, hypothesis testing, and specification analysis and provides practical examples that show how to apply the theories to real data sets. The book first builds familiarity with the basic skills needed to work with econometric data in Stata before delving into the core topics, which range from the multiple linear regression model to instrumental-variables estimation.


A Practitioner's Guide to Stochastic Frontier Analysis Using Stata

A Practitioner's Guide to Stochastic Frontier Analysis Using Stata

Author: Subal C. Kumbhakar

Publisher: Cambridge University Press

Published: 2015-01-26

Total Pages: 375

ISBN-13: 1316194493

DOWNLOAD EBOOK

A Practitioner's Guide to Stochastic Frontier Analysis Using Stata provides practitioners in academia and industry with a step-by-step guide on how to conduct efficiency analysis using the stochastic frontier approach. The authors explain in detail how to estimate production, cost, and profit efficiency and introduce the basic theory of each model in an accessible way, using empirical examples that demonstrate the interpretation and application of models. This book also provides computer code, allowing users to apply the models in their own work, and incorporates the most recent stochastic frontier models developed in academic literature. Such recent developments include models of heteroscedasticity and exogenous determinants of inefficiency, scaling models, panel models with time-varying inefficiency, growth models, and panel models that separate firm effects and persistent and transient inefficiency. Immensely helpful to applied researchers, this book bridges the chasm between theory and practice, expanding the range of applications in which production frontier analysis may be implemented.


Semiparametric Regression for the Applied Econometrician

Semiparametric Regression for the Applied Econometrician

Author: Adonis Yatchew

Publisher: Cambridge University Press

Published: 2003-06-02

Total Pages: 238

ISBN-13: 9780521012263

DOWNLOAD EBOOK

This book provides an accessible collection of techniques for analyzing nonparametric and semiparametric regression models. Worked examples include estimation of Engel curves and equivalence scales, scale economies, semiparametric Cobb-Douglas, translog and CES cost functions, household gasoline consumption, hedonic housing prices, option prices and state price density estimation. The book should be of interest to a broad range of economists including those working in industrial organization, labor, development, urban, energy and financial economics. A variety of testing procedures are covered including simple goodness of fit tests and residual regression tests. These procedures can be used to test hypotheses such as parametric and semiparametric specifications, significance, monotonicity and additive separability. Other topics include endogeneity of parametric and nonparametric effects, as well as heteroskedasticity and autocorrelation in the residuals. Bootstrap procedures are provided.


Introduction to Time Series Using Stata

Introduction to Time Series Using Stata

Author: Sean Becketti

Publisher:

Published: 2020-03-02

Total Pages: 446

ISBN-13: 9781597183062

DOWNLOAD EBOOK

Introduction to Time Series Using Stata, Revised Edition, by Sean Becketti, is a practical guide to working with time-series data using Stata. In this book, Becketti introduces time-series techniques--from simple to complex--and explains how to implement them using Stata. The many worked examples, concise explanations that focus on intuition, and useful tips based on the author's experience make the book insightful for students, academic researchers, and practitioners in industry and government.Becketti is a financial industry veteran with decades of experience in academics, government, and private industry. He was also a developer of Stata in its infancy and has been a regular Stata user since its inception. He wrote many of the first time-series commands in Stata. With his abundant knowledge of Stata and extensive experience with real-world time-series applications, Becketti provides readers with unique insights and motivation throughout the book.For those new to Stata, the book begins with a mild yet fast-paced introduction to Stata, highlighting all the features you need to know to get started using Stata for time-series analysis. Before diving into analysis of time series, Becketti includes a quick refresher on statistical foundations such as regression and hypothesis testing.The discussion of time-series analysis begins with techniques for smoothing time series. As the moving-average and Holt-Winters techniques are introduced, Becketti explains the concepts of trends, cyclicality, and seasonality and shows how they can be extracted from a series. The book then illustrates how to use these methods for forecasting. Although these techniques are sometimes neglected in other time-series books, they are easy to implement, can be applied quickly, often produce forecasts just as good as more complicated techniques, and, as Becketti emphasizes, have the distinct advantage of being easily explained to colleagues and policy makers without backgrounds in statistics.Next, the book focuses on single-equation time-series models. Becketti discusses regression analysis in the presence of autocorrelated disturbances as well as the ARIMA model and Box-Jenkins methodology. An entire chapter is devoted to applying these techniques to develop an ARIMA-based model of U.S. GDP; this will appeal to practitioners, in particular, because it goes step by step through a real-world example: here is my series, now how do I fit an ARIMA model to it? The discussion of single-equation models concludes with a self-contained summary of ARCH/GARCH modeling.In the final portion of the book, Becketti discusses multiple-equation models. He introduces VAR models and uses a simple model of the U.S. economy to illustrate all key concepts, including model specification, Granger causality, impulse-response analyses, and forecasting. Attention then turns to nonstationary time-series. Becketti masterfully navigates the reader through the often-confusing task of specifying a VEC model, using an example based on construction wages in Washington, DC, and surrounding states.Introduction to Time Series Using Stata, Revised Edition, by Sean Becketti, is a first-rate, example-based guide to time-series analysis and forecasting using Stata. This is a must-have resource for researchers and students learning to analyze time-series data and for anyone wanting to implement time-series methods in Stata. [ed.]


A Course in Environmental Economics

A Course in Environmental Economics

Author: Daniel J. Phaneuf

Publisher: Cambridge University Press

Published: 2016-12-24

Total Pages: 1301

ISBN-13: 1316867358

DOWNLOAD EBOOK

This unique graduate textbook offers a compelling narrative of the growing field of environmental economics that integrates theory, policy, and empirical topics. Daniel J. Phaneuf and Till Requate present both traditional and emerging perspectives, incorporating cutting-edge research in a way that allows students to easily identify connections and common themes. Their comprehensive approach gives instructors the flexibility to cover a range of topics, including important issues - such as tax interaction, environmental liability rules, modern treatments of incomplete information, technology adoption and innovation, and international environmental problems - that are not discussed in other graduate-levels texts. Numerous data-based examples and end-of-chapter exercises show students how theoretical and applied research findings are complementary, and will enable them to develop skills and interests in all areas of the field. Additional data sets and exercises can be accessed online, providing ample opportunity for practice. For more information, visit the book's website at http://phaneuf-requate.com/.


Introductory Econometrics for Finance

Introductory Econometrics for Finance

Author: Chris Brooks

Publisher: Cambridge University Press

Published: 2008-05-22

Total Pages: 752

ISBN-13: 1139472305

DOWNLOAD EBOOK

This best-selling textbook addresses the need for an introduction to econometrics specifically written for finance students. Key features: • Thoroughly revised and updated, including two new chapters on panel data and limited dependent variable models • Problem-solving approach assumes no prior knowledge of econometrics emphasising intuition rather than formulae, giving students the skills and confidence to estimate and interpret models • Detailed examples and case studies from finance show students how techniques are applied in real research • Sample instructions and output from the popular computer package EViews enable students to implement models themselves and understand how to interpret results • Gives advice on planning and executing a project in empirical finance, preparing students for using econometrics in practice • Covers important modern topics such as time-series forecasting, volatility modelling, switching models and simulation methods • Thoroughly class-tested in leading finance schools. Bundle with EViews student version 6 available. Please contact us for more details.


Mostly Harmless Econometrics

Mostly Harmless Econometrics

Author: Joshua D. Angrist

Publisher: Princeton University Press

Published: 2009-01-04

Total Pages: 392

ISBN-13: 0691120358

DOWNLOAD EBOOK

In addition to econometric essentials, this book covers important new extensions as well as how to get standard errors right. The authors explain why fancier econometric techniques are typically unnecessary and even dangerous.


EnvStats

EnvStats

Author: Steven P. Millard

Publisher: Springer Science & Business Media

Published: 2013-10-16

Total Pages: 305

ISBN-13: 1461484561

DOWNLOAD EBOOK

This book describes EnvStats, a new comprehensive R package for environmental statistics and the successor to the S-PLUS module EnvironmentalStats for S-PLUS (first released in 1997). EnvStats and R provide an open-source set of powerful functions for performing graphical and statistical analyses of environmental data, bringing major environmental statistical methods found in the literature and regulatory guidance documents into one statistical package, along with an extensive hypertext help system that explains what these methods do, how to use these methods, and where to find them in the environmental statistics literature. EnvStats also includes numerous built-in data sets from regulatory guidance documents and the environmental statistics literature. This book shows how to use EnvStats and R to easily: * graphically display environmental data * plot probability distributions * estimate distribution parameters and construct confidence intervals on the original scale for commonly used distributions such as the lognormal and gamma, as well as do this nonparametrically * estimate and construct confidence intervals for distribution percentiles or do this nonparametrically (e.g., to compare to an environmental protection standard) * perform and plot the results of goodness-of-fit tests * compute optimal Box-Cox data transformations * compute prediction limits and simultaneous prediction limits (e.g., to assess compliance at multiple sites for multiple constituents) * perform nonparametric estimation and test for seasonal trend (even in the presence of correlated observations) * perform power and sample size computations and create companion plots for sampling designs based on confidence intervals, hypothesis tests, prediction intervals, and tolerance intervals * deal with non-detect (censored) data * perform Monte Carlo simulation and probabilistic risk assessment * reproduce specific examples in EPA guidance documents EnvStats combined with other R packages (e.g., for spatial analysis) provides the environmental scientist, statistician, researcher, and technician with tools to “get the job done!”


Discrete Choice Methods with Simulation

Discrete Choice Methods with Simulation

Author: Kenneth Train

Publisher: Cambridge University Press

Published: 2009-07-06

Total Pages: 399

ISBN-13: 0521766559

DOWNLOAD EBOOK

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.