Entry Level Mathematics

Entry Level Mathematics

Author: Gill Hewlett

Publisher: Nelson Thornes

Published: 2003

Total Pages: 372

ISBN-13: 9780748774562

DOWNLOAD EBOOK

Contains an accessible page design, with controlled language and readability levels to match the requirements of the students undertaking this qualification. The Teacher File contains activities that build upon areas of work given in the Student Book. This Student Book and accompanying Teacher File provide resources for revised specifications.


Entry Level Maths

Entry Level Maths

Author: Gill Hewlett

Publisher: Nelson Thornes

Published: 2004-01-14

Total Pages: 292

ISBN-13: 0748774572

DOWNLOAD EBOOK

Contains additional activities, allowing students to extend their work either in the classroom or for homework. The Pack also includes a range of certificates that can be handed out to students as a reward for hard work.


A Beautiful Math

A Beautiful Math

Author: Tom Siegfried

Publisher: National Academies Press

Published: 2006-09-21

Total Pages: 272

ISBN-13: 0309133807

DOWNLOAD EBOOK

Millions have seen the movie and thousands have read the book but few have fully appreciated the mathematics developed by John Nash's beautiful mind. Today Nash's beautiful math has become a universal language for research in the social sciences and has infiltrated the realms of evolutionary biology, neuroscience, and even quantum physics. John Nash won the 1994 Nobel Prize in economics for pioneering research published in the 1950s on a new branch of mathematics known as game theory. At the time of Nash's early work, game theory was briefly popular among some mathematicians and Cold War analysts. But it remained obscure until the 1970s when evolutionary biologists began applying it to their work. In the 1980s economists began to embrace game theory. Since then it has found an ever expanding repertoire of applications among a wide range of scientific disciplines. Today neuroscientists peer into game players' brains, anthropologists play games with people from primitive cultures, biologists use games to explain the evolution of human language, and mathematicians exploit games to better understand social networks. A common thread connecting much of this research is its relevance to the ancient quest for a science of human social behavior, or a Code of Nature, in the spirit of the fictional science of psychohistory described in the famous Foundation novels by the late Isaac Asimov. In A Beautiful Math, acclaimed science writer Tom Siegfried describes how game theory links the life sciences, social sciences, and physical sciences in a way that may bring Asimov's dream closer to reality.


Entry Level Mathematics

Entry Level Mathematics

Author: Christine Watson

Publisher: Hodder Murray

Published: 2001

Total Pages: 224

ISBN-13: 9780340801635

DOWNLOAD EBOOK

Entry Level Mathematics text book provides both student and teacher with complete coverage of the Entry Level Mathematics specification. Written by highly-respected authors, every aspect of the specification is covered in detail. Entry Level Mathematics text book will guide the student and teacher through the specification in a systematic and concise fashion, and will become a vital element of student success. The text book is organised into self-contained Units ideal for motivating students and increasing confidence. It has parallel calculator and non-calculator exercises, focused topisc for each Unit with interactive questions to closely engage the students and an added attention to the language level to ensure the text is accessible. It is adaptable to a GCSE Foundation class, a whole Entry Level Mathematics class or on an individual basis. This book contains references to worksheets provided by the teacher's resource.


Basic Mathematics for College Students

Basic Mathematics for College Students

Author: Alan S. Tussy

Publisher: Brooks Cole

Published: 2005-11

Total Pages: 0

ISBN-13: 9780495188957

DOWNLOAD EBOOK

The fundamental goal in Tussy and Gustafson's BASIC MATHEMATICS FOR COLLEGE STUDENTS, Third Edition is to teach students to read, write, and think about mathematics through building a conceptual foundation in the language of mathematics. The book blends instructional approaches that include vocabulary, practice, and well-defined pedagogy, along with an emphasis on reasoning, modeling, communication, and technology skills. Also students planning to take an introductory algebra course in the future can use this text to build the mathematical foundation they will need. Tussy and Gustafson understand the challenges of teaching developmental students and this book reflects a holistic approach to teaching mathematics that includes developing study skills, problem solving, and critical thinking alongside mathematical concepts. New features in this edition include a pretest for students to gauge their understanding of prerequisite concepts, problems that make correlations between student life and the mathematical concepts, and study skills information designed to give students the best chance to succeed in the course. Additionally, the text's widely acclaimed Study Sets at the end of every section are tailored to improve students' ability to read, write, and communicate mathematical ideas.


Math for Programmers

Math for Programmers

Author: Paul Orland

Publisher: Manning Publications

Published: 2021-01-12

Total Pages: 686

ISBN-13: 1617295353

DOWNLOAD EBOOK

In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks


How to Prove It

How to Prove It

Author: Daniel J. Velleman

Publisher: Cambridge University Press

Published: 2006-01-16

Total Pages: 401

ISBN-13: 0521861241

DOWNLOAD EBOOK

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.


Basic Training in Mathematics

Basic Training in Mathematics

Author: R. Shankar

Publisher: Springer

Published: 2013-12-20

Total Pages: 371

ISBN-13: 1489967982

DOWNLOAD EBOOK

Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.


Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning

Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning

Author: Wendy M. Smith

Publisher: American Mathematical Soc.

Published: 2021-05-05

Total Pages: 348

ISBN-13: 1470463776

DOWNLOAD EBOOK

The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond—trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that allow postsecondary institutions to incorporate and sustain active learning in Precalculus to Calculus 2 learning environments. Out of the approximately 2.5 million students enrolled in collegiate mathematics courses each year, over 90% are enrolled in Precalculus to Calculus 2 courses. Forty-four percent of mathematics departments think active learning mathematics strategies are important for Precalculus to Calculus 2 courses, but only 15 percnt state that they are very successful at implementing them. Therefore, insights into the following research question will help with institutional transformations: What conditions, strategies, interventions and actions at the departmental and classroom levels contribute to the initiation, implementation, and institutional sustainability of active learning in the undergraduate calculus sequence (Precalculus to Calculus 2) across varied institutions?