Thermomechanics of Solids and Structures

Thermomechanics of Solids and Structures

Author: Marko Canadija

Publisher: Elsevier

Published: 2023-04-19

Total Pages: 390

ISBN-13: 0128204486

DOWNLOAD EBOOK

Thermomechanics of Solids and Structures: Physical Mechanisms, Continuum Mechanics, and Applications covers kinematics, balance equations, the strict thermodynamic frameworks of thermoelasticity, thermoplasticity, creep covering constitutive equations, the physical mechanisms of deformation, along with computational aspects. The book concludes with coverage of the thermodynamics of solids and applications of the constitutive three-dimensional model to both one-dimensional homogeneous and composite beam structures. Practical applications of the theories and techniques covered are emphasized throughout the book, with analytical solutions provided for various problems. - Provides foundational knowledge on continuum mechanics, covering kinematics, balance equations, isothermal elasticity and plasticity, variational principles, and more - Presents applications of constitutive 3D models to homogeneous and composite beams, including equations for stress and displacement estimation in thermoelastic beam problems - Reviews experimental results of thermoelastic material behavior, along with case studies to support reviews - Covers the inelastic behavior of materials at elevated temperatures, with experimental results for both monotonic and cyclic tensile tests presented - Looks at the physical mechanisms, experimental results, and constitutive modeling of creep


Continuum Mechanics: Volume 1

Continuum Mechanics: Volume 1

Author: C. S. Jog

Publisher: Cambridge University Press

Published: 2015-06-25

Total Pages: 878

ISBN-13: 1316528383

DOWNLOAD EBOOK

Continuum mechanics studies the foundations of deformable body mechanics from a mathematical perspective. It also acts as a base upon which other applied areas such as solid mechanics and fluid mechanics are developed. This book discusses some important topics, which have come into prominence in the latter half of the twentieth century, such as material symmetry, frame-indifference and thermomechanics. The study begins with the necessary mathematical background in the form of an introduction to tensor analysis followed by a discussion on kinematics, which deals with purely geometrical notions such as strain and rate of deformation. Moving on to derivation of the governing equations, the book also presents applications in the areas of linear and nonlinear elasticity. In addition, the volume also provides a mathematical explanation to the axioms and laws of deformable body mechanics, and its various applications in the field of solid mechanics.


Nonlinear Continuum Mechanics

Nonlinear Continuum Mechanics

Author: Carlos Agelet de Saracibar

Publisher: Springer Nature

Published: 2023-08-22

Total Pages: 356

ISBN-13: 3031152077

DOWNLOAD EBOOK

This textbook on Continuum Mechanics presents 9 chapters. Chapters 1 and 2 are devoted to Tensor Algebra and Tensor Analysis. Part I of the book includes the next 3 chapters. All the content here is valid for both solid and fluid materials. At the end of Part I, the reader should be able to set up in local spatial/material form, the fundamental governing equations and inequalities for a Continuum Mechanics problem. Part II of the book, Chapters 6 to 10, is devoted to presenting some nonlinear constitutive models for Nonlinear Solid Mechanics, including Finite Deformation Hyperelasticity, Finite Deformation Plasticity, Finite Deformation Coupled Thermoplasticity, and Finite Deformation Contact Mechanics. The constitutive equations are derived within a thermodynamically consistent framework. Finite deformation elastoplasticity models are based on a multiplicative decomposition of the deformation gradient and the notion of an intermediate configuration. Different formulations based on the intermediate configuration, the current or spatial configuration, and the material configuration are considered. The last chapter is devoted to Variational Methods in Solid Mechanics, a fundamental topic in Computational Mechanics. The book may be used as a textbook for an advanced Master’s course on Nonlinear Continuum Mechanics for graduate students in Civil, Mechanical or Aerospace Engineering, Applied Mathematics, or Applied Physics, with an interest in Continuum Mechanics and Computational Mechanics.


Finite Element Analysis

Finite Element Analysis

Author: David W. Nicholson

Publisher: CRC Press

Published: 2003-03-26

Total Pages: 298

ISBN-13: 0203009517

DOWNLOAD EBOOK

Finite element modeling has developed into one of the most important tools at an engineer's disposal, especially in applications involving nonlinearity. While engineers coping with such applications may have access to powerful computers and finite element codes, too often they lack the strong foundation in finite element analysis (FEA) that nonline


Vehicle and Automotive Engineering 2

Vehicle and Automotive Engineering 2

Author: Károly Jármai

Publisher: Springer

Published: 2018-05-09

Total Pages: 801

ISBN-13: 331975677X

DOWNLOAD EBOOK

This book presents the proceedings of the second Vehicle Engineering and Vehicle Industry conference, reflecting the outcomes of theoretical and practical studies and outlining future development trends in a broad field of automotive research. The conference’s main themes included design, manufacturing, economic and educational topics.


Generalized Models and Non-classical Approaches in Complex Materials 1

Generalized Models and Non-classical Approaches in Complex Materials 1

Author: Holm Altenbach

Publisher: Springer

Published: 2018-03-24

Total Pages: 799

ISBN-13: 3319724401

DOWNLOAD EBOOK

This book is the first of 2 special volumes dedicated to the memory of Gérard Maugin. Including 40 papers that reflect his vast field of scientific activity, the contributions discuss non-standard methods (generalized model) to demonstrate the wide range of subjects that were covered by this exceptional scientific leader. The topics range from micromechanical basics to engineering applications, focusing on new models and applications of well-known models to new problems. They include micro–macro aspects, computational endeavors, options for identifying constitutive equations, and old problems with incorrect or non-satisfying solutions based on the classical continua assumptions.