Engineering Metrology and Measurements is a textbook designed for students of mechanical, production and allied disciplines to facilitate learning of various shop-floor measurement techniques and also understand the basics of mechanical measurements.
Engineering Metrology and Measurements is a textbook designed for students of mechanical, production and allied disciplines to facilitate learning of various shop-floor measurement techniques and also understand the basics of mechanical measurements.With a conventional introduction to the principles and standards of measurement, the book in subsequent chapters takes the reader through the important topics of metrology such as limits, fits and tolerances, linear measurements, angular measurements, comparators, optical measurements. The last fewchapters discuss the measurement concepts of simple physical parameters such as force, torque, strain, temperature, and pressure, before introducing the contemporary information on nanometrology as the last chapter.Adopting an illustrative approach to explain the concepts, the book presents solved numerical problems, practice problems, review questions, and multiple choice questions.
THE ENGINEERING METROLOGY MCQ (MULTIPLE CHOICE QUESTIONS) SERVES AS A VALUABLE RESOURCE FOR INDIVIDUALS AIMING TO DEEPEN THEIR UNDERSTANDING OF VARIOUS COMPETITIVE EXAMS, CLASS TESTS, QUIZ COMPETITIONS, AND SIMILAR ASSESSMENTS. WITH ITS EXTENSIVE COLLECTION OF MCQS, THIS BOOK EMPOWERS YOU TO ASSESS YOUR GRASP OF THE SUBJECT MATTER AND YOUR PROFICIENCY LEVEL. BY ENGAGING WITH THESE MULTIPLE-CHOICE QUESTIONS, YOU CAN IMPROVE YOUR KNOWLEDGE OF THE SUBJECT, IDENTIFY AREAS FOR IMPROVEMENT, AND LAY A SOLID FOUNDATION. DIVE INTO THE ENGINEERING METROLOGY MCQ TO EXPAND YOUR ENGINEERING METROLOGY KNOWLEDGE AND EXCEL IN QUIZ COMPETITIONS, ACADEMIC STUDIES, OR PROFESSIONAL ENDEAVORS. THE ANSWERS TO THE QUESTIONS ARE PROVIDED AT THE END OF EACH PAGE, MAKING IT EASY FOR PARTICIPANTS TO VERIFY THEIR ANSWERS AND PREPARE EFFECTIVELY.
Applied Metrology for Manufacturing Engineering, stands out from traditional works due to its educational aspect. Illustrated by tutorials and laboratory models, it is accessible to users of non-specialists in the fields of design and manufacturing. Chapters can be viewed independently of each other. This book focuses on technical geometric and dimensional tolerances as well as mechanical testing and quality control. It also provides references and solved examples to help professionals and teachers to adapt their models to specific cases. It reflects recent developments in ISO and GPS standards and focuses on training that goes hand in hand with the progress of practical work and workshops dealing with measurement and dimensioning.
Optical methods, stimulated by the advent of inexpensive and reliable lasers, are assuming an increasingly important role in the field of engineering metrology. Requiring only a basic knowledge of optics, this text provides a compendium of practical information prepared by leaders in the field.
Knowledge of measurement and instrumentation is of increasing importance in industry. Advances in automated manufacturing and requirement to conform to various standards have resulted in a large number of computerised and automated inspection techniques along with the classical metrology methods. Manufacturers have to find new ways of ensuring that the quality of their products and processes remains the best in the global market. The best way for the engineering sector to compete against industrialised nations is to focus on high-quality, value-added engineering. Principles of Engineering Metrology explains the salient features in dimensional metrology as per IS and ISO standards methods. It explains in detail the applications of form, position and orientation of various features with mathematical background and a good number of illustrations. The book is targeted as a guide to practicing engineers in dimensional metrology and students of mechanical engineering and production engineering. Dimensional metrology laboratories engaged in consultancy, as well as machining shops, and assembly units of mechanical components will also find this book useful. It will also be suitable to machine tool shops for preliminary studies.
Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement. The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a wide range of topics including hardness (measurement and relevance), surface damage and the machining of brittle surfaces, the characterization of automobile cylinder bores using different techniques including artificial neural networks and the design and use of polymer bearings in microelectromechanical devices. Edited by three practitioners with a wide knowledge of the subject and the community, Metrology and Properties of Engineering Surfaces brings together leading academics and practitioners in a comprehensive and insightful treatment of the subject. The book is an essential reference work both for researchers working and teaching in the technology and for industrial users who need to be aware of current developments of the technology and new areas of application.
Advanced Metrology: Freeform Surfaces provides the perfect guide for engineering designers and manufacturers interested in exploring the benefits of this technology. The inclusion of industrial case studies and examples will help readers to implement these techniques which are being developed across different industries as they offer improvements to the functional performance of products and reduce weight and cost. - Includes case studies in every chapter to help readers implement the techniques discussed - Provides unique advice from industry on hot subjects, including surface description and data processing - Features links to online content, including video, code and software
The subject of this book is surface metrology, in particular two major aspects: surface texture and roundness. It has taken a long time for manufacturing engineers and designers to realise the usefulness of these features in quality of conformance and quality of design. Unfortunately this awareness has come at a time when engineers versed in the use and specification of surfaces are at a premium. Traditionally surface metrology usage has been dictated by engineers who have served long and demanding apprenticeships, usually in parallel with studies leading to technician-level qualifications. Such people understood the processes and the achievable accuracies of machine tools, thereby enabling them to match production capability with design requirements. This synergy, has been made possible by the understanding of adherence to careful metrological procedures and a detailed knowledge of surface measuring instruments and their operation, in addition to wider inspection room techniques. With the demise in the UK of polytechnics and technical colleges, this source of skilled technicians has all but dried up. The shortfall has been made up of semi skilled craftsmen, or inexperienced graduates who cannot be expected to satisfy tradition al or new technology needs. Miniaturisation, for example, has had a pro found effect. Engineering parts are now routinely being made with nanometre surface texture and fiatness. At these molecular and atomic scales, the engineer has to be a physicist.