Engineering, Medicine and Science at the Nano-Scale

Engineering, Medicine and Science at the Nano-Scale

Author: Stephen J. Fonash

Publisher: John Wiley & Sons

Published: 2018-12-03

Total Pages: 307

ISBN-13: 3527338721

DOWNLOAD EBOOK

Das führende Lehrbuch der Nanotechnologie und ein Kompendium von Lehrveranstaltungen der Penn State University: didaktisch fundiert mit Lernzielen am Beginn der Kapitel, Kapitelzusammenfassungen und Literaturhinweisen.


Nanodiamonds

Nanodiamonds

Author: Dean Ho

Publisher: Springer Science & Business Media

Published: 2009-11-25

Total Pages: 294

ISBN-13: 1441905316

DOWNLOAD EBOOK

Nanodiamonds: Applications in Biology and Nanoscale Medicine highlights the translation of nanodiamonds toward clinical relevance and medical applications. Integrating a spectrum of internationally-recognized experts currently developing these technologies, this book fits as a cornerstone of this exciting field. These include contributions from clinician scientists working at the interface of medicine and nanotechnologies which discuss the critical and requisite properties of nanomaterials, in a concise and cohesive manner. Nanodiamonds: Applications in Biology and Nanoscale Medicine provides a multidisciplinary overview of nanodiamonds and there uses for scientific, engineering and clinical audiences alike.


Nanoscale Science and Technology

Nanoscale Science and Technology

Author: Robert Kelsall

Publisher: John Wiley & Sons

Published: 2005-11-01

Total Pages: 472

ISBN-13: 0470020865

DOWNLOAD EBOOK

Nanotechnology is a vital new area of research and development addressing the control, modification and fabrication of materials, structures and devices with nanometre precision and the synthesis of such structures into systems of micro- and macroscopic dimensions. Future applications of nanoscale science and technology include motors smaller than the diameter of a human hair and single-celled organisms programmed to fabricate materials with nanometer precision. Miniaturisation has revolutionised the semiconductor industry by making possible inexpensive integrated electronic circuits comprised of devices and wires with sub-micrometer dimensions. These integrated circuits are now ubiquitous, controlling everything from cars to toasters. The next level of miniaturisation, beyond sub-micrometer dimensions into nanoscale dimensions (invisible to the unaided human eye) is a booming area of research and development. This is a very hot area of research with large amounts of venture capital and government funding being invested worldwide, as such Nanoscale Science and Technology has a broad appeal based upon an interdisciplinary approach, covering aspects of physics, chemistry, biology, materials science and electronic engineering. Kelsall et al present a coherent approach to nanoscale sciences, which will be invaluable to graduate level students and researchers and practising engineers and product designers.


Nano-engineering In Science And Technology: An Introduction To The World Of Nano-design

Nano-engineering In Science And Technology: An Introduction To The World Of Nano-design

Author: Michael Rieth

Publisher: World Scientific

Published: 2003-01-16

Total Pages: 164

ISBN-13: 9814488100

DOWNLOAD EBOOK

This important book provides a vivid introduction to the procedures, techniques, problems and difficulties of computational nano-engineering and design. The reader is given step by step the scientific background information, for an easy reconstruction of the explanations. The focus is laid on the molecular dynamics method, which is well suited for explaining the topic to the reader with just a basic knowledge of physics. Results and conclusions of detailed nano-engineering studies are presented in an instructive style. In summary, the book puts readers immediately in a position to take their first steps in the field of computational nano-engineering and design.


No Small Matter

No Small Matter

Author: Felice C. Frankel

Publisher: Belknap Press

Published: 2009-11-09

Total Pages: 200

ISBN-13: 9780674035669

DOWNLOAD EBOOK

A small revolution is remaking the world. The only problem is, we can’t see it. This book uses dazzling images and evocative descriptions to reveal the virtually invisible realities and possibilities of nanoscience. An introduction to the science and technology of small things, No Small Matter explains science on the nanoscale. Authors Felice C. Frankel and George M. Whitesides offer an overview of recent scientific advances that have given us our ever-shrinking microtechnology—for instance, an information processor connected by wires only 1,000 atoms wide. They describe the new methods used to study nanostructures, suggest ways of understanding their often bizarre behavior, and outline their uses in technology. This book explains the various means of making nanostructures and speculates about their importance for critical developments in information processing, computation, biomedicine, and other areas. No Small Matter considers both the benefits and the risks of nano/microtechnology—from the potential of quantum computers and single-molecule genomic sequencers to the concerns about self-replicating nanosystems. By making the practical and probable realities of nanoscience as comprehensible and clear as possible, the book provides a unique vision of work at the very boundaries of modern science.


Sustainable Nanoscale Engineering

Sustainable Nanoscale Engineering

Author: Gyorgy Szekely

Publisher: Elsevier

Published: 2019-09-18

Total Pages: 476

ISBN-13: 0128146826

DOWNLOAD EBOOK

Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing presents the latest on the design of nanoscale materials and their applications in sustainable chemical production processes. The newest achievements of materials science, in particular nanomaterials, opened new opportunities for chemical engineers to design more efficient, safe, compact and environmentally benign processes. These materials include metal-organic frameworks, graphene, membranes, imprinted polymers, polymers of intrinsic microporosity, nanoparticles, and nanofilms, to name a few. Topics discussed include gas separation, CO2 sequestration, continuous processes, waste valorization, catalytic processes, bioengineering, pharmaceutical manufacturing, supercritical CO2 technology, sustainable energy, molecular imprinting, graphene, nature inspired chemical engineering, desalination, and more. - Describes new, efficient and environmentally accepted processes for nanomaterials design - Includes a large array of materials, such as metal-organic frameworks, graphene, imprinted polymers, and more - Explores the contribution of these materials in the development of sustainable chemical processes


Small Wonders, Endless Frontiers

Small Wonders, Endless Frontiers

Author: National Research Council

Publisher: National Academies Press

Published: 2002-09-10

Total Pages: 69

ISBN-13: 0309086558

DOWNLOAD EBOOK

Nanoscale science and technology, often referred to as "nanoscience" or "nanotechnology," are science and engineering enabled by our relatively new ability to manipulate and characterize matter at the level of single atoms and small groups of atoms. This capability is the result of many developments in the last two decades of the 20th century, including inventions of scientific instruments like the scanning tunneling microscope. Using such tools, scientists and engineers have begun controlling the structure and properties of materials and systems at the scale of 10?9 meters, or 1/100,000 the width of a human hair. Scientists and engineers anticipate that nanoscale work will enable the development of materials and systems with dramatic new properties relevant to virtually every sector of the economy, such as medicine, telecommunications, and computers, and to areas of national interest such as homeland security. Indeed, early products based on nanoscale technology have already found their way into the marketplace and into defense applications. In 1996, as the tremendous scientific and economic potential of nanoscale science and technology was beginning to be recognized, a federal interagency working group formed to consider creation of a national nanotechnology initiative (NNI). As a result of this effort, around $1 billion has been directed toward NNI research since the start of FY 2001. At the request of officials in the White House National Economic Council and agencies that are participating in NNI, the National Research Council (NRC) agreed to review the NNI. The Committee for the Review of the National Nanotechnology Initiative was formed by the NRC and asked to consider topics such as the current research portfolio of the NNI, the suitability of federal investments, and interagency coordination efforts in this area.


Triennial Review of the National Nanotechnology Initiative

Triennial Review of the National Nanotechnology Initiative

Author: National Research Council

Publisher: National Academies Press

Published: 2013-12-20

Total Pages: 187

ISBN-13: 0309269334

DOWNLOAD EBOOK

The National Nanotechnology Initiative (NNI) is a multiagency, multidisciplinary federal initiative comprising a collection of research programs and other activities funded by the participating agencies and linked by the vision of "a future in which the ability to understand and control matter at the nanoscale leads to a revolution in technology and industry that benefits society." As first stated in the 2004 NNI strategic plan, the participating agencies intend to make progress in realizing that vision by working toward four goals. Planning, coordination, and management of the NNI are carried out by the interagency Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the National Science and Technology Council (NSTC) Committee on Technology (CoT) with support from the National Nanotechnology Coordination Office (NNCO). Triennial Review of the National Nanotechnology Initiative is the latest National Research Council review of the NNI, an assessment called for by the 21st Century Nanotechnology Research and Development Act of 2003. The overall objective of the review is to make recommendations to the NSET Subcommittee and the NNCO that will improve the NNI's value for basic and applied research and for development of applications in nanotechnology that will provide economic, societal, and national security benefits to the United States. In its assessment, the committee found it important to understand in some detail-and to describe in its report-the NNI's structure and organization; how the NNI fits within the larger federal research enterprise, as well as how it can and should be organized for management purposes; and the initiative's various stakeholders and their roles with respect to research. Because technology transfer, one of the four NNI goals, is dependent on management and coordination, the committee chose to address the topic of technology transfer last, following its discussion of definitions of success and metrics for assessing progress toward achieving the four goals and management and coordination. Addressing its tasks in this order would, the committee hoped, better reflect the logic of its approach to review of the NNI. Triennial Review of the National Nanotechnology Initiative also provides concluding remarks in the last chapter.


Science at the Nanoscale

Science at the Nanoscale

Author: Chin Wee Shong

Publisher: Pan Stanford Publishing

Published: 2010

Total Pages: 226

ISBN-13: 9814241032

DOWNLOAD EBOOK

Nanotechnology is one of the most important growth areas of this century. This book aims to introduce the various basic principles and knowledge needed for students to understand science at the nanoscale.--[book cover].


Nanoreactor Engineering for Life Sciences and Medicine

Nanoreactor Engineering for Life Sciences and Medicine

Author: Agnes Ostafin

Publisher: Artech House

Published: 2008

Total Pages: 294

ISBN-13: 1596931590

DOWNLOAD EBOOK

This trail-blazing volume covers nanoreactor essentials, including a review of synthetic procedures and materials used to develop various nanoreactor configurations. It explores nanoreactor theory and design, highlighting the fundamental differences between molecular events in macroscale and nanoscale reactors.