Engineering in Medicine

Engineering in Medicine

Author: Paul A. Iaizzo

Publisher: Academic Press

Published: 2018-11-07

Total Pages: 606

ISBN-13: 012813514X

DOWNLOAD EBOOK

Engineering in Medicine: Advances and Challenges documents the historical development, cutting-edge research and future perspectives on applying engineering technology to medical and healthcare challenges. The book has 22 chapters under 5 sections: cardiovascular engineering, neuroengineering, cellular and molecular bioengineering, medical and biological imaging, and medical devices.The challenges and future perspectives of engineering in medicine are discussed, with novel methodologies that have been implemented in innovative medical device development being described.This is an ideal general resource for biomedical engineering researchers at both universities and in industry as well as for undergraduate and graduate students. Presents a broad perspective on the state-of-the-art research in applying engineering technology to medical and healthcare challenges that cover cardiovascular engineering, neuroengineering, cellular and molecular bioengineering, medical and biological imaging, and medical devices Presents the challenges and future perspectives of engineering in medicine Written by members of the University of Minnesota’s prestigious Institute of Engineering in Medicine (IEM), in collaboration with other experts around the world


Engineering-Medicine

Engineering-Medicine

Author: Lawrence S. Chan

Publisher: CRC Press

Published: 2021-03-31

Total Pages: 346

ISBN-13: 9780367779801

DOWNLOAD EBOOK

This textbok incorporates engineering principles into medical education and practice. It provides the general framework and global perspective on how engineering principles can positively impact medicine.


Engineering-Medicine

Engineering-Medicine

Author: Lawrence S. Chan

Publisher: CRC Press

Published: 2019-05-15

Total Pages: 346

ISBN-13: 1351012266

DOWNLOAD EBOOK

This transformative textbook, first of its kind to incorporate engineering principles into medical education and practice, will be a useful tool for physicians, medical students, biomedical engineers, biomedical engineering students, and healthcare executives. The central approach of the proposed textbook is to provide principles of engineering as applied to medicine and guide the medical students and physicians in achieving the goal of solving medical problems by engineering principles and methodologies. For the medical students and physicians, this proposed textbook will train them to “think like an engineer and act as a physician”. The textbook contains a variety of teaching techniques including class lectures, small group discussions, group projects, and individual projects, with the goals of not just helping students and professionals to understand the principles and methods of engineering, but also guiding students and professionals to develop real-life solutions. For the biomedical engineers and biomedical engineering students, this proposed textbook will give them a large framework and global perspective of how engineering principles could positively impact real-life medicine. To the healthcare executives, the goal of this book is to provide them general guidance and specific examples of applying engineering principles in implementing solution-oriented methodology to their healthcare enterprises. Overall goals of this book are to help improve the overall quality and efficiency of healthcare delivery and outcomes.


Mechatronics in Medicine A Biomedical Engineering Approach

Mechatronics in Medicine A Biomedical Engineering Approach

Author: Siamak Najarian

Publisher: McGraw Hill Professional

Published: 2011-11-04

Total Pages: 213

ISBN-13: 0071768971

DOWNLOAD EBOOK

Cutting-edge coverage of mechatronics in medical systems Mechatronics in Medicine: A Biomedical Engineering Approach describes novel solutions for utilizing mechatronics to design innovative, accurate, and intelligent medical devices and optimize conventional medical instruments. After an introduction to mechatronics, the book addresses sensing technologies, actuators and feedback sensors, mechanisms and mechanical devices, and processing and control systems. Artificial intelligence, expert systems, and medical imaging are also covered. This pioneering guide concludes by discussing applications of mechatronics in medicine and biomedical engineering and presenting seven real-world medical case studies. In-depth details on: Sensing technology Electromechanical, fluid, pneumatic power, and other types of actuators Feedback sensors Mechanisms, mechanical devices, and their functions Principles and methods of processing and controlling mechatronics systems Artificial intelligence, expert systems, artificial neural networks, fuzzy systems, and neuro fuzzy systems Medical imaging, including ultrasound, MRI, CT scan, and nuclear imaging Medical case studies in mechatronics


Biomedical Engineering

Biomedical Engineering

Author: W. Mark Saltzman

Publisher: Cambridge University Press

Published: 2015-05-21

Total Pages: 785

ISBN-13: 131629868X

DOWNLOAD EBOOK

The second edition of this popular introductory undergraduate textbook uses examples, applications, and profiles of biomedical engineers to show students the relevance of the theory and how it can be used to solve real problems in human medicine. The essential molecular biology, cellular biology, and human physiology background is included for students to understand the context in which biomedical engineers work. Updates throughout highlight important advances made over recent years, including iPS cells, microRNA, nanomedicine, imaging technology, biosensors, and drug delivery systems, giving students a modern description of the various subfields of biomedical engineering. Over two hundred quantitative and qualitative exercises, many new to this edition, help consolidate learning, whilst a solutions manual, password-protected for instructors, is available online. Finally, students can enjoy an expanded set of leader profiles in biomedical engineering within the book, showcasing the broad range of career paths open to students who make biomedical engineering their calling.


Skin Tissue Engineering and Regenerative Medicine

Skin Tissue Engineering and Regenerative Medicine

Author: Mohammad Albanna

Publisher: Academic Press

Published: 2016-01-14

Total Pages: 468

ISBN-13: 012801797X

DOWNLOAD EBOOK

The skin is the largest human organ system. Loss of skin integrity due to injury or illness results in a substantial physiologic imbalance and ultimately in severe disability or death. From burn victims to surgical scars and plastic surgery, the therapies resulting from skin tissue engineering and regenerative medicine are important to a broad spectrum of patients. Skin Tissue Engineering and Regenerative Medicine provides a translational link for biomedical researchers across fields to understand the inter-disciplinary approaches which expanded available therapies for patients and additional research collaboration. This work expands on the primary literature on the state of the art of cell therapies and biomaterials to review the most widely used surgical therapies for the specific clinical scenarios. Explores cellular and molecular processes of wound healing, scar formation, and dermal repair Includes examples of animal models for wound healing and translation to the clinical world Presents the current state of, and clinical opportunities for, extracellular matrices, natural biomaterials, synthetic biomaterials, biologic skin substitutes, and adult and fetal stem and skin cells for skin regenerative therapies and wound management Discusses new innovative approaches for wound healing including skin bioprinting and directed cellular therapies


Body 2.0

Body 2.0

Author: Sara Latta

Publisher: Twenty-First Century Books ™

Published: 2019-11-05

Total Pages: 111

ISBN-13: 1541552423

DOWNLOAD EBOOK

Scientists are on the verge of a revolution in biomedical engineering that will forever change the way we think about medicine, even life itself. Cutting-edge researchers are working to build body organs and tissue in the lab. They are developing ways to encourage the body to regenerate damaged or diseased bone and muscle tissue. Scientists are striving to re-route visual stimuli to the brain to help blind people see. They may soon discover methods to enlist the trillions of microbes living in our bodies to help us fight disease. Learn about four strands of bioengineering—tissue engineering and regenerative medicine, neuroengineering, microbial science, and genetic engineering and synthetic biology—and meet scientists working in these fields.


Biodegradable Systems in Tissue Engineering and Regenerative Medicine

Biodegradable Systems in Tissue Engineering and Regenerative Medicine

Author: Rui L. Reis

Publisher: CRC Press

Published: 2004-11-29

Total Pages: 590

ISBN-13: 0203491238

DOWNLOAD EBOOK

Conventional materials technology has yielded clear improvements in regenerative medicine. Ideally, however, a replacement material should mimic the living tissue mechanically, chemically, biologically and functionally. The use of tissue-engineered products based on novel biodegradable polymeric systems will lead to dramatic improvements in health


Fundamentals of Tissue Engineering and Regenerative Medicine

Fundamentals of Tissue Engineering and Regenerative Medicine

Author: Ulrich Meyer

Publisher: Springer Science & Business Media

Published: 2009-02-11

Total Pages: 1049

ISBN-13: 3540777555

DOWNLOAD EBOOK

"Fundamentals of Tissue Engineering and Regenerative Medicine" provides a complete overview of the state of the art in tissue engineering and regenerative medicine. Tissue engineering has grown tremendously during the past decade. Advances in genetic medicine and stem cell technology have significantly improved the potential to influence cell and tissue performance, and have recently expanded the field towards regenerative medicine. In recent years a number of approaches have been used routinely in daily clinical practice, others have been introduced in clinical studies, and multitudes are in the preclinical testing phase. Because of these developments, there is a need to provide comprehensive and detailed information for researchers and clinicians on this rapidly expanding field. This book offers, in a single volume, the prerequisites of a comprehensive understanding of tissue engineering and regenerative medicine. The book is conceptualized according to a didactic approach (general aspects: social, economic, and ethical considerations; basic biological aspects of regenerative medicine: stem cell medicine, biomolecules, genetic engineering; classic methods of tissue engineering: cell, tissue, organ culture; biotechnological issues: scaffolds; bioreactors, laboratory work; and an extended medical discipline oriented approach: review of clinical use in the various medical specialties). The content of the book, written in 68 chapters by the world’s leading research and clinical specialists in their discipline, represents therefore the recent intellect, experience, and state of this bio-medical field.


The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education

The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2018-06-21

Total Pages: 283

ISBN-13: 0309470641

DOWNLOAD EBOOK

In the United States, broad study in an array of different disciplines â€"arts, humanities, science, mathematics, engineeringâ€" as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century. Researchers in all academic disciplines have been able to delve more deeply into their areas of expertise, grappling with ever more specialized and fundamental problems. Yet today, many leaders, scholars, parents, and students are asking whether higher education has moved too far from its integrative tradition towards an approach heavily rooted in disciplinary "silos". These "silos" represent what many see as an artificial separation of academic disciplines. This study reflects a growing concern that the approach to higher education that favors disciplinary specialization is poorly calibrated to the challenges and opportunities of our time. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education examines the evidence behind the assertion that educational programs that mutually integrate learning experiences in the humanities and arts with science, technology, engineering, mathematics, and medicine (STEMM) lead to improved educational and career outcomes for undergraduate and graduate students. It explores evidence regarding the value of integrating more STEMM curricula and labs into the academic programs of students majoring in the humanities and arts and evidence regarding the value of integrating curricula and experiences in the arts and humanities into college and university STEMM education programs.