This is the sixteenth edition of the book Engineering Mathematics-I. The earlier editions have received positive response from the teachers and the students. This textbook has been written conferring to the revised syllabus (R19) of first year (First Semester) of B. Tech students of JNTU, Anantapur. In this edition some topics have been updated. The previous question paper problems have been included at appropriate places. For the benefit of the students, the previous GATE questions have been included at the end of each chapter. The topics has been made as simple as possible and in some instances detailed explanation
This book comprises previous question papers problems at appropriate places and also previous GATE questions at the end of each chapter for the benefit of the students
In the four previous editions the author presented a text firmly grounded in the mathematics that engineers and scientists must understand and know how to use. Tapping into decades of teaching at the US Navy Academy and the US Military Academy and serving for twenty-five years at (NASA) Goddard Space Flight, he combines a teaching and practical experience that is rare among authors of advanced engineering mathematics books. This edition offers a smaller, easier to read, and useful version of this classic textbook. While competing textbooks continue to grow, the book presents a slimmer, more concise option. Instructors and students alike are rejecting the encyclopedic tome with its higher and higher price aimed at undergraduates. To assist in the choice of topics included in this new edition, the author reviewed the syllabi of various engineering mathematics courses that are taught at a wide variety of schools. Due to time constraints an instructor can select perhaps three to four topics from the book, the most likely being ordinary differential equations, Laplace transforms, Fourier series and separation of variables to solve the wave, heat, or Laplace's equation. Laplace transforms are occasionally replaced by linear algebra or vector calculus. Sturm-Liouville problem and special functions (Legendre and Bessel functions) are included for completeness. Topics such as z-transforms and complex variables are now offered in a companion book, Advanced Engineering Mathematics: A Second Course by the same author. MATLAB is still employed to reinforce the concepts that are taught. Of course, this Edition continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of previous editions. Worked solutions are given in the back of the book.
In this book, how to solve such type equations has been elaborately described. In this book, vector differential calculus is considered, which extends the basic concepts of (ordinary) differential calculus, such as, continuity and differentiability to vector functions in a simple and natural way. This book comprises previous question papers problems at appropriate places and also previous GATE questions at the end of each chapter for the
Unit I 1. Real And Complex Matrices And Linear System Of Equations 2. Eigen Values And Eigen Vectors 3. Quadratic Forms Unit Ii 4. Solution Of Algebraic And Transcendental Equations 5. Interpolation 6. Curve Fitting Unit Iii 7. Numerical Differentiation And Integration 8. Numerical Solution Of Ordinary Differential Equations Unit Iv 9. Fourier Series 10. Fourier Transforms Unit V 11. Partial Differential Equations
The Interesting Feature Of This Book Is Its Organization And Structure. That Consists Of Systematizing Of The Definitions, Methods, And Results That Something Resembling A Theory. Simplicity, Clarity, And Precision Of Mathematical Language Makes Theoretical Topics More Appealing To The Readers Who Are Of Mathematical Or Non-Mathematical Background. For Quick References And Immediate Attentions3⁄4Concepts And Definitions, Methods And Theorems, And Key Notes Are Presented Through Highlighted Points From Beginning To End. Whenever, Necessary And Probable A Visual Approach Of Presentation Is Used. The Amalgamation Of Text And Figures Make Mathematical Rigors Easier To Understand. Each Chapter Begins With The Detailed Contents, Which Are Discussed Inside The Chapter And Conclude With A Summary Of The Material Covered In The Chapter. Summary Provides A Brief Overview Of All The Topics Covered In The Chapter. To Demonstrate The Principles Better, The Applicability Of The Concepts Discussed In Each Topic Are Illustrated By Several Examples Followed By The Practice Sets Or Exercises.
For a one-semester senior or beginning graduate level course in power system dynamics. This text begins with the fundamental laws for basic devices and systems in a mathematical modeling context. It includes systematic derivations of standard synchronous machine models with their fundamental controls. These individual models are interconnected for system analysis and simulation. Singular perturbation is used to derive and explain reduced-order models.