This book describes an approach to engineering education that integrates a comprehensive set of personal, interpersonal, and professional engineering skills with engineering disciplinary knowledge in order to prepare innovative and entrepreneurial engineers. The education of engineers is set in the context of engineering practice, that is, Conceiving, Designing, Implementing, and Operating (CDIO) through the entire lifecycle of engineering processes, products, and systems. The book is both a description of the development and implementation of the CDIO model and a guide to engineering programs worldwide that seek to improve the education of young engineers.
A Comprehensive Manual for the FE Industrial CBT Exam Brightwood Engineering Education's Industrial Engineering: FE Review Manual contains a variety of practice problems and step-by-step solutions that provide you with a complete and thorough review of the Fundamentals of Engineering (FE) Industrial CBT exam topics. Topics Covered Engineering Economics Engineering Science Ethics and Business Practices Facilities and Logistics Human Factors, Ergonomics, and Safety Industrial Management Manufacturing, Production, and Service Systems Mathematics Modeling and Computation Probability and Statistics Quality Systems Engineering Work Design Key Features 100+ practice problems with step-by-step solutions Contains conventional English and SI units Binding: Paperback Publisher: PPI, A Kaplan Company
This updated and enlarged Second Edition provides in-depth, progressive studies of kinematic mechanisms and offers novel, simplified methods of solving typical problems that arise in mechanisms synthesis and analysis - concentrating on the use of algebra and trigonometry and minimizing the need for calculus.;It continues to furnish complete coverag
Shows how the engineering curriculum can be a site for rendering social justice visible in engineering, for exploring complex socio-technical interplays inherent in engineering practice, and for enhancing teaching and learning Using social justice as a catalyst for curricular transformation, Engineering Justice presents an examination of how politics, culture, and other social issues are inherent in the practice of engineering. It aims to align engineering curricula with socially just outcomes, increase enrollment among underrepresented groups, and lessen lingering gender, class, and ethnicity gaps by showing how the power of engineering knowledge can be explicitly harnessed to serve the underserved and address social inequalities. This book is meant to transform the way educators think about engineering curricula through creating or transforming existing courses to attract, retain, and motivate engineering students to become professionals who enact engineering for social justice. Engineering Justice offers thought-provoking chapters on: why social justice is inherent yet often invisible in engineering education and practice; engineering design for social justice; social justice in the engineering sciences; social justice in humanities and social science courses for engineers; and transforming engineering education and practice. In addition, this book: Provides a transformative framework for engineering educators in service learning, professional communication, humanitarian engineering, community service, social entrepreneurship, and social responsibility Includes strategies that engineers on the job can use to advocate for social justice issues and explain their importance to employers, clients, and supervisors Discusses diversity in engineering educational contexts and how it affects the way students learn and develop Engineering Justice is an important book for today’s professors, administrators, and curriculum specialists who seek to produce the best engineers of today and tomorrow.
While the project management body of knowledge is embraced by disciplines ranging from manufacturing and business to social services and healthcare, the application of efficient project management is of particularly high value in science, technology, and engineering undertakings. STEP Project Management: Guide for Science, Technology, and Engineeri
Offers instructions for creating pop-up and novelty cards with a variety of movable mechanisms and features over one hundred pop-up techniques and projects illustrated by more than one thousand color photographs.
This book comprises high-quality refereed research papers presented at the Third International Conference on Computer Science, Engineering and Education Applications (ICCSEEA2020), held in Kyiv, Ukraine, on 21–22 January 2020, organized jointly by National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, National Aviation University, and the International Research Association of Modern Education and Computer Science. The topics discussed in the book include state-of-the-art papers in computer science, artificial intelligence, engineering techniques, genetic coding systems, deep learning with its medical applications, and knowledge representation with its applications in education. It is an excellent source of references for researchers, graduate students, engineers, management practitioners, and undergraduate students interested in computer science and their applications in engineering and education.
The majority of professors have never had a formal course in education, and the most common method for learning how to teach is on-the-job training. This represents a challenge for disciplines with ever more complex subject matter, and a lost opportunity when new active learning approaches to education are yielding dramatic improvements in student learning and retention. This book aims to cover all aspects of teaching engineering and other technical subjects. It presents both practical matters and educational theories in a format useful for both new and experienced teachers. It is organized to start with specific, practical teaching applications and then leads to psychological and educational theories. The "practical orientation" section explains how to develop objectives and then use them to enhance student learning, and the "theoretical orientation" section discusses the theoretical basis for learning/teaching and its impact on students. Written mainly for PhD students and professors in all areas of engineering, the book may be used as a text for graduate-level classes and professional workshops or by professionals who wish to read it on their own. Although the focus is engineering education, most of this book will be useful to teachers in other disciplines. Teaching is a complex human activity, so it is impossible to develop a formula that guarantees it will be excellent. However, the methods in this book will help all professors become good teachers while spending less time preparing for the classroom. This is a new edition of the well-received volume published by McGraw-Hill in 1993. It includes an entirely revised section on the Accreditation Board for Engineering and Technology (ABET) and new sections on the characteristics of great teachers, different active learning methods, the application of technology in the classroom (from clickers to intelligent tutorial systems), and how people learn.