This book offers an update on recent developments in modern engineering design. Different engineering disciplines, such as mechanical, materials, computer and process engineering, provide the foundation for the design and development of improved structures, materials and processes. The modern design cycle is characterized by the interaction between various disciplines and a strong shift to computer-based approaches where only a few experiments are conducted for verification purposes. A major driver for this development is the increased demand for cost reduction, which is also linked to environmental demands. In the transportation industry (e.g. automotive or aerospace), the demand for higher fuel efficiency is related to reduced operational costs and less environmental damage. One way to fulfil such requirements is lighter structures and/or improved processes for energy conversion. Another emerging area is the interaction of classical engineering with the health and medical sector.
This volume gives an overview on recent developments for various applications of modern engineering design. Different engineering disciplines such as mechanical, materials, computer and process engineering provide the foundation for the design and development of improved structures, materials and processes. The modern design cycle is characterized by an interaction of different disciplines and a strong shift to computer-based approaches where only a few experiments are performed for verification purposes. A major driver for this development is the increased demand for cost reduction, which is also connected to environmental demands. In the transportation industry (e.g. automotive or aerospace), this is connected with the demand for higher fuel efficiency, which is related to the operational costs and the lower harm for the environment. One way to fulfil such requirements are lighter structures and/or improved processes for energy conversion. Another emerging area is the interaction of classical engineering with the health and medical sector. In this book, many examples of the mentioned design applications are presented.
This book gathers original papers reporting on innovative methods and tools in design, modelling, simulation and optimization, and their applications in engineering design, manufacturing and other relevant industrial sectors. Topics span from advances in geometric modelling, applications of virtual reality, innovative strategies for product development and additive manufacturing, human factors and user-centered design, engineering design education and applications of engineering design methods in medical rehabilitation and cultural heritage. Chapters are based on contributions to the Second International Conference on Design Tools and Methods in Industrial Engineering, ADM 2021, held on September 9–10, 2021, in Rome, Italy, and organized by the Italian Association of Design Methods and Tools for Industrial Engineering, and Dipartimento di Ingegneria Meccanica e Aerospaziale of Sapienza Università di Roma, Italy. All in all, this book provides academics and professionals with a timely overview and extensive information on trends and technologies in industrial design and manufacturing.
Engineering Design, Planning and Management, Second Edition represents a compilation of essential resources, methods, materials and knowledge developed by the author and used over two decades. The book covers engineering design methodology through an interdisciplinary approach, with concise discussions and a visual format. It explores project management and creative design in the context of both established companies and entrepreneurial start-ups. Readers will discover the usefulness of the design process model through practical examples and applications from across engineering disciplines. Sections explain useful design techniques, including concept mapping and weighted decision matrices that are supported with extensive graphics, flowcharts and accompanying interactive templates. Discussions are organized around 12 chapters dealing with topics such design concepts and embodiments, decision-making, finance, budgets, purchasing, bidding, communication, meetings and presentations, reliability and system design, manufacturing design and mechanical design. - Covers all steps in the design process - Includes several chapters on project management, budgeting and teamwork, providing sufficient background to help readers effectively work with time and budget constraints - Provides flowcharts, checklists and other templates that are useful for implementing successful design methods - Presents examples and applications from several different engineering fields to show the general usefulness of the design process model
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors
In the current, increasingly aggressive business environment, crucial decisions about product design often involve significant uncertainty. Highlighting the competitive advantage available from using risk-based reliability design, Engineering Design Reliability Applications: For the Aerospace, Automotive, and Ship Industries provides an overview of
Every engineer must eventually face their first daunting design project. Scheduling, organization, budgeting, prototyping: all can be overwhelming in the short time given to complete the project. While there are resources available on project management and the design process, many are focused too narrowly on specific topics or areas of engineering. Practical Engineering Design presents a complete overview of the design project and beyond for any engineering discipline, including sections on how to protect intellectual property rights and suggestions for turning the project into a business. An outgrowth of the editors' broad experience teaching the capstone Engineering Design course, Practical Engineering Design reflects the most pressing and often-repeated questions with a set of guidelines for the entire process. The editors present two sample project reports and presentations in the appendix and refer to them throughout the book, using examples and critiques to demonstrate specific suggestions for improving the quality of writing and presentation. Real-world examples demonstrate how to formulate schedules and budgets, and generous references in each chapter offer direction to more in-depth information. Whether for a co-op assignment or your first project on the job, this is the most comprehensive guide available for deciding where to begin, organizing the team, budgeting time and resources, and, most importantly, completing the project successfully.
This text presents a different approach to the traditional engineering graphics course by emphasizing the importance of sketching, 3D solid modelling and the use of design data bases throughout the engineering process.
This book contains the papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2018), held on 20-22 June 2018 in Cartagena, Spain. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into six main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed, and future interdisciplinary collaborations.