UPDATED AND EXPANDED NEW 11TH EDITION. Design guide for earth retaining structures covers nearly every type of earth retaining structure: cantilevered, counterfort, restrained (basement walls), gravity, segmental, sheet pile, soldier pile, and others. Current building code requirements are referenced throughout. Topics include types of retaining structures, basic soil mechanics, design of concrete and masonry walls, lateral earth pressures, seismic design, surcharges, pile and pier foundations, Gabion walls and swimming pool walls. Fourteen varied design examples. Comprehensive Appendix with Glossary of terminology. 257 pages. 8-1/2x11 paperback.
The National Concrete Masonry Association presents the essential guide to constructing segmental retaining walls with detailed, easy-to-follow diagrams and charts for do-it-yourself homeowners and landscape contractors alike. From the fundamentals to the latest research and modern techniques in segmental retaining wall construction, this colorful and inspiring gallery of design suggestions accompanies the expertly written step-by-step guide, and offers a plethora of landscaping ideas ilable and will inspire great new designs for all landscape styles.
This manual provides guidance for the safe design and economical construction of retaining and flood walls. This manual is intended primarily for retaining walls which will be subjected to hydraulic loadings such as flowing water, submergence, wave action, and spray, exposure to chemically contaminated atmosphere, and/or severe climatic conditions. For the design of retaining walls which will not be subjected to hydraulic loadings or severe environmental conditions as described above, TM S-8l8-l may be used for computing the loadings and evaluating the stability of the structure.
Take a Detailed Look at the Practice of Drystone Retaining Wall Construction Drystone retaining walls make very efficient use of local materials, and sit comfortably in their environment. They make an important contribution to heritage and to the character of the landscape, and are loved by many people who value the skill and ingenuity that has gone into their construction, as well as simply how they look. And yet, in engineering terms, they are complex. They can deform significantly as their loading changes and their constituent stones weather. This gives them ductility--they deal with changes by adapting to them. In some ways, they behave like conventional concrete retaining walls, but in many ways they are better. They cannot be designed or assessed correctly unless these differences are understood. Implementing concepts that require no prior knowledge of civil engineering, the authors: Explain the behavior of earth retaining structures Provide a theoretical framework for modeling the mechanical stability of a drystone retaining wall Outline reliable rules for constructing a drystone retaining wall Include charts to support the preliminary sizing of drystone retaining walls Examine the relevance of drystone in terms of sustainability Describe more advanced methods of analysis Drystone Retaining Walls: Design, Construction and Assessment draws on theoretical work and full-scale practical testing to explain how these structures work, without presuming that the reader has received an engineering education. The book goes on to give enough detail to give the professional engineer confidence in the methods used in design and assessment, and insight into what matters most in the way in which drystone retaining walls are built. It shows how to design ne
This report explores analytical and design methods for the seismic design of retaining walls, buried structures, slopes, and embankments. The Final Report is organized into two volumes. NCHRP Report 611 is Volume 1 of this study. Volume 2, which is only available online, presents the proposed specifications, commentaries, and example problems for the retaining walls, slopes and embankments, and buried structures.
The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.
Design guide for earth retaining structures. Updated and expanded new 10th edtition covers nearly every type of earth retaining structure: cantilevered, counterfort, restrained (basement walls), gravity, segmental, sheet pile, sodier pile, and others. Current building code requirements are covered including IBC '12, MSJC '11, ACI 318-11, ASCE 7-10, CBC '13, and AASHTO. Topics include types of retaining structures, basic soil mechanics, design of concrete and masonry walls, lateral earth pressures, seismic design, surcharges, pile and pier foundations, and swimming pool walls. Fourteen varied design examples. Comprehensive Appendix. Glossary of terminology. 246 pages. 8-1/2x11 paperback.
TRB's National Cooperative Highway Research Program (NCHRP) Report 663: Design of Roadside Barrier Systems Placed on MSE Retaining Walls explores a design procedure for roadside barrier systems mounted on the edge of a mechanically stabilized earth (MSE) wall. The procedures were developed following American Association of State Highway and Transportation Officials Load and Resistant Factor Design (LRFD) practices. Appendices A through H to NCHRP Report 663 are available online. Titles of Appendices A through H are as follows: Appendix A: Design of MSE Wall; Appendix B: State-of-Practice Survey; Appendix C: Detailed Drawing of MSE Wall for Bogie Test; Appendix D: Bogie Test MSE Wall Construction Procedure; Appendix E: Detailed Drawing of MSE Wall for TL-3 Test; Appendix F: TL-3 MSE Wall Construction Procedure; Appendix G: Crash Test Vehicle Properties and Information; Appendix H: Crash Test Sequential Photographs--
Now in its eighth edition, this bestselling text continues to blend clarity of explanation with depth of coverage to present students with the fundamental principles of soil mechanics. From the foundations of the subject through to its application in practice, Craig‘s Soil Mechanics provides an indispensable companion to undergraduate courses and b