Handbook of Particle Detection and Imaging

Handbook of Particle Detection and Imaging

Author: Claus Grupen

Publisher: Springer Science & Business Media

Published: 2012-01-08

Total Pages: 1251

ISBN-13: 3642132715

DOWNLOAD EBOOK

The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.


Monte Carlo Transport of Electrons and Photons

Monte Carlo Transport of Electrons and Photons

Author: T.M. Jenkins

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 637

ISBN-13: 1461310598

DOWNLOAD EBOOK

For ten days at the end of September, 1987, a group of about 75 scientists from 21 different countries gathered in a restored monastery on a 750 meter high piece of rock jutting out of the Mediterranean Sea to discuss the simulation of the transport of electrons and photons using Monte Carlo techniques. When we first had the idea for this meeting, Ralph Nelson, who had organized a previous course at the "Ettore Majorana" Centre for Scientific Culture, suggested that Erice would be the ideal place for such a meeting. Nahum, Nelson and Rogers became Co-Directors of the Course, with the help of Alessandro Rindi, the Director of the School of Radiation Damage and Protection, and Professor Antonino Zichichi, Director of the "Ettore Majorana" Centre. The course was an outstanding success, both scientifically and socially, and those at the meeting will carry the marks of having attended, both intellectually and on a personal level where many friendships were made. The scientific content of the course was at a very high caliber, both because of the hard work done by all the lecturers in preparing their lectures (e. g. , complete copies of each lecture were available at the beginning of the course) and because of the high quality of the "students", many of whom were accomplished experts in the field. The outstanding facilities of the Centre contributed greatly to the success. This volume contains the formal record of the course lectures.


Experimental Techniques in Nuclear and Particle Physics

Experimental Techniques in Nuclear and Particle Physics

Author: Stefaan Tavernier

Publisher: Springer Science & Business Media

Published: 2010-02-06

Total Pages: 316

ISBN-13: 3642008291

DOWNLOAD EBOOK

I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work. This is an open access book.


Proton Therapy Physics

Proton Therapy Physics

Author: Harald Paganetti

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 691

ISBN-13: 1439836450

DOWNLOAD EBOOK

Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.


Particle Physics Reference Library

Particle Physics Reference Library

Author: Christian W. Fabjan

Publisher: Springer Nature

Published: 2020

Total Pages: 1083

ISBN-13: 3030353184

DOWNLOAD EBOOK

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access


Introduction to Experimental Particle Physics

Introduction to Experimental Particle Physics

Author: Richard Clinton Fernow

Publisher: Cambridge University Press

Published: 1989-03-31

Total Pages: 436

ISBN-13: 9780521379403

DOWNLOAD EBOOK

This book brings together the most important topics in experimental particle physics over the past forty years to give a brief but balanced overview of the subject. The author begins by reviewing particle physics and discussing electromagnetic and nuclear interactions. He then goes on to discuss three nearly universal aspects of particle physics experiments: beams, targets, and fast electronics. The second part of the book treats in detail the properties of various types of particle detector, such as scintillation counters, Cerenkov counters, proportional chambers, drift chambers, sampling calorimeters, and specialized detectors. Wherever possible the author attempts to enumerate the advantages and disadvantages of performance. Finally, he discusses aspects of specific experiments, such as properties of triggers, types of measurement, spectrometers, and the integration of detectors into coherent systems. Throughout the book, each chapter begins with a discussion of the basic principles involved, followed by selective examples.


Health Risks from Exposure to Low Levels of Ionizing Radiation

Health Risks from Exposure to Low Levels of Ionizing Radiation

Author: Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation

Publisher: National Academies Press

Published: 2006-03-23

Total Pages: 422

ISBN-13: 0309133343

DOWNLOAD EBOOK

This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.