Praise for the Fourth Edition"Outstanding praise for previous editions.the single best general reference for the organic chemist."-Journal of the Electrochemical Society"The cast of editors and authors is excellent, the text is, in general, easily readable and understandable, well documented, and well indexed those who purchase the book will be sa
Contents: Oxygen The Essential Environmental Component As A Classical Electrochemical Element, Ion Voltammetry at the Interface Between Two Immiscible Electrolyte Solutions, Principles of Interfacial Measurements and Absorption Voltammetry with Mercury Electrodes, Adsorptive Stripping Voltammetry, Electrochemical Detection for High-Performance Separation Techniques and Flow Analysis, Electrochemical Gas Sensors, Electrochemistry of Environmentally Important Organic Substances, Electroanalysis in Environmental Control, Electrochemistry of Biologically Active Substances in Non-Aqueous Medium, Chemical and Electrochemical Transformations of 1, 2, 4 Trianine Herbicides.
Stable radicals - molecules with odd electrons which are sufficiently long lived to be studied or isolated using conventional techniques - have enjoyed a long history and are of current interest for a broad array of fundamental and applied reasons, for example to study and drive novel chemical reactions, in the development of rechargeable batteries or the study of free radical reactions in the body. In Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds a team of international experts provide a broad-based overview of stable radicals, from the fundamental aspects of specific classes of stable neutral radicals to their wide range of applications including synthesis, materials science and chemical biology. Topics covered include: triphenylmethyl and related radicals polychlorinated triphenylmethyl radicals: towards multifunctional molecular materials phenalenyls, cyclopentadienyls, and other carbon-centered radicals the nitrogen oxides: persistent radicals and van der Waals complex dimers nitroxide radicals: properties, synthesis and applications the only stable organic sigma radicals: di-tert-alkyliminoxyls. delocalized radicals containing the hydrazyl [R2N-NR] unit metal-coordinated phenoxyl radicals stable radicals containing the thiazyl unit: synthesis, chemical, and materials properties stable radicals of the heavy p-block elements application of stable radicals as mediators in living-radical polymerization nitroxide-catalyzed alcohol oxidations in organic synthesis metal-nitroxide complexes: synthesis and magneto-structural correlations rechargeable batteries using robust but redox-active organic radicals spin labeling: a modern perspective functional in vivo EPR spectroscopy and imaging using nitroxides and trityl radicals biologically relevant chemistry of nitroxides Stable Free Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds is an essential guide to this fascinating area of chemistry for researchers and students working in organic and physical chemistry and materials science.
Magnesium remains almost unique among the metals in its ability to react directly with a wide variety of compounds. This organic chemistry field has seen steady progress, and a volume on this topic is long overdue. In the tradition of the Patai Series this title treats all aspects of functional groups, containing chapters on the theoretical and computational foundations; on analytical and spectroscopic aspects with dedicated chapters on Mass Spectrometry, NMR, IR/UV, etc.; on reaction mechanisms; on applications in syntheses. Depending on the functional group there are also chapters on industrial use, on effects in biological and/or environmental systems. Since the area of Organomagnesium Chemistry continues to grow far beyond the classical Grignard Reagents, this is an essential resource to help the reader keep abreast of the latest developments.
A wonderfully successful NATO Advanced Study Institute on "Sulfur-Centered Reactive Intermediates in Chemistry and Biology" was held 18-30 June, 1989, at the Hotel Villa del Mare in Maratea, Italy. Despite the beautiful setting with mountains behind us and over looking the clear blue Mediterranean Sea under a cloudless sky (and with a private beach available), the lectures were extremely well attended. While some credit can go to the seriousness of the students, more must go to the calibre of speakers and the high quality of C. Chatgilialoglu, and Co-Director, Professor K. -D. their presentations. The Director, Dr. Asmus, are to be congratulated for putting together such an outstanding scientific program. Dr. Chatgilialoglu is also to be commended for arranging an equally stimulating social pro gram which included bus, train and boat trips to many local sites of interest. It was particularly fitting that a meeting on the chemistry and biochemistry of sulfur should be held in Italy since Italian chemists have made major contributions to our under standing of the organic chemistry of sulfur, including the chemistry of its reactive inter mediates. The early Italian interest in sulfur chemistry arose from the fact that Italy, or more specifically, Sicily, was a major world producer of sulfur prior to the development and exploitation of the Frasch process in Texas and Louisiana.
The Encyclopedia of Electrochemical Power Sources, Second Edition, is a comprehensive seven-volume set that serves as a vital interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With an increased focus on the environmental and economic impacts of electrochemical power sources, this work not only consolidates extensive coverage of the field but also serves as a gateway to the latest literature for professionals and students alike. The field of electrochemical power sources has experienced significant growth and development since the first edition was published in 2009. This is reflected in the exponential growth of the battery market, the improvement of many conventional systems, and the introduction of new systems and technologies. This completely revised second edition captures these advancements, providing updates on all scientific, technical, and economic developments over the past decade. Thematically arranged, this edition delves into crucial areas such as batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. It explores challenges and advancements in electrode and electrolyte materials, structural design, optimization, application of novel materials, and performance analysis. This comprehensive resource, with its focus on the future of electrochemical power sources, is an essential tool for navigating this rapidly evolving field. - Covers the main types of power sources, including their operating principles, systems, materials, and applications - Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers - Incorporates 365 articles, with timely coverage of environmental and sustainability aspects - Arranged thematically to facilitate easy navigation of topics and easy exploration of the field across its key branches - Follows a consistent structure and features elements such as key objective boxes, summaries, figures, references, and cross-references etc., to help students, faculty, and professionals alike
This book introduces the main aspects of modern applied electrochemistry. Starting with the basics of thermodynamic background, structure of interfaces and selected techniques used in analytical and material chemistry, the authors address the principles of electrochemistry in material science: corrosion, electrocatalysis, electrodeposition, energy storage and conversion. The application of nanostructured materials in these processes, as well as interfacing of electrochemistry with biology and medicine is discussed. The final part of the book is devoted to photoelectrochemistry and solar energy conversion in photoelectrochemical cells of various types. The goal of this book is to show that electrochemistry has many applications, not only for understanding of various phenomena in nowadays life but also in practical devices and can stimulate new science-enabled technologies, nourishing leaps from bench-top to large-scale industries, providing also means for protecting our environment. Creates a snapshot of the most important problems in applied electrochemistry and guides how to solve them. Gives an overview of the processes running during corrosion, electrodeposition and electrocatalysis. Focuses mainly on graduate students and those scientists who want to get a solid background knowledge of applied electrochemistry.