The emergence of marine and freshwater toxins in geographical areas where they have never been reported before is a concern due to the considerable impact on (sea)food contamination, and consequently, on public health. Several groups of marine biotoxins, in particular tetrodotoxins, ciguatoxins, and palytoxins, are included among the relevant marine biotoxins that have recently emerged in several coastal areas. A similar situation has been observed in freshwater, where cyanobacterial toxins, such as microcystins, could end up in unexpected areas such as the estuaries where shellfish are cultivated. Climate change and the increased availability of nutrients have been considered as the key factors in the expansion of all of these toxins into new areas; however, this could also be due to more intense biological invasions, more sensitive analytical methods, or perhaps even an increased scientific interest in these natural contaminations. The incidences of human intoxications due to the consumption of seafood contaminated with these toxins have made their study an important task to accomplish in order to protect human health. This Special Issue has a focus on a wide variety of emerging biotoxin classes and techniques to identify and quantify them.
This paper provides an extensive review of different aspects of five shellfish-poisoning syndromes (paralytic, diarrhoeic, amnesic, neurologic and azapiracid), as well as one fish-poisoning syndrome (ciguatera fish poisoning), and discusses in detail the causative toxins produced by marine organisms, chemical structures and analytical methods of the toxins, habitat and occurrence of the toxin-producing organisms, case studies and existing regulations. Based on this analysis, risk assessments are carried out for each of the toxins, and recommendations are elaborated to improve the management of these risks in order to reduce the harmful effect of these toxins on public health.
Marine biotoxins may pose a threat to the human consumption of seafood and seafood products. The increasing global trade and higher demand for seafood products worldwide represents a challenge for food safety authorities, policy makers, food business operators, and the scientific community, in particular, researchers devoted to environmental sciences, toxicology, and analytical chemistry. In addition, due to changes in climate conditions and technological developments, new and emerging marine toxins are being detected in regions where they were previously unknown. This Special Issue highlight studies aiming to the develop detection methods for marine biotoxins for better understanding the dynamics of accumulation/elimination of marine biotoxins and their effects on marine organisms, as well as toxin exposure studies that aim to evaluate the risks associated with the consumption of contaminated seafood.
This paper provides an extensive review of different aspects of five shellfish-poisoning syndromes (paralytic, diarrhoeic, amnesic, neurologic and azapiracid), as well as one fish-poisoning syndrome (ciguatera fish poisoning). It discusses in detail the causative toxins produced by marine organisms, chemical structures and analytical methods, habitat and occurrence of the toxin-producing organisms, case studies and existing regulations. Based on this analysis, risk assessments are carried out for each of the toxins, and recommendations are elaborated to improve the management of these risks in order to reduce the harmful effects of these toxins on public health. Contents Chapter 1: Introduction; Chapter 2: Paralytic Shellfish Poisoning (PSP); Chemical structures and properties, Methods of analysis, Source organism(s) and habitat, Occurrence and accumulation in seafood, Toxicity of PSP toxins, Prevention of PSP intoxication, Cases and outbreaks of PSP, Regulations and monitoring; Chapter 3: Diarrhoeic Shellfish Poisoning (DSP); Chemical structures and properties, Methods of analysis, Source organism(s) and habitat, Occurrence and accumulation in seafood, Toxicity of DSP toxins, Prevention of DSP intoxication, Cases and outbreaks of DSP, Regulations and monitoring; Chapter 4: Amnesic Shellfish Poisoning (ASP); Chemical structures and properties, Methods of analysis, Source organism(s) and habitat, Occurrence and accumulation in seafood, Toxicity of ASP toxins, Prevention of ASP toxins, Prevention of ASP intoxication, Cases and outbreaks of ASP, Regulations and monitoring; Chapter 5: Neurologic Shellfish Poisoning (NSP); Chemical structures and properties, Methods of analysis, Source organism(s) and habitat, Occurrence and accumulation in seafood, Toxicity of NSP toxins, Prevention of NSP intoxication, Cases and outbreaks of NSP, Regulations and monitoring; Chapter 6: Azaspiracid Shellfish Poisoning (AZP); Chemical structures and properties, Methods of analysis, Source organism(s) and habitat, Occurrence and accumulation in seafood, Toxicity of AZP toxins, Prevention of AZP intoxication, Cases and outbreaks of AZP, Regulations and monitoring; Chapter 7: Ciguatera Fish Poisoning (CFP); Chemical structures and properties of ciguatoxins, Methods of analysis, Source organism(s), habitat and distribution, Occurrence and accumulation in seafood, Toxicity of CFP toxins, Prevention of CFP intoxication, Cases and outbreaks of CFP, Regulations and monitoring; Chapter 8: Risk Assessment; Risk assessment for paralytic shellfish poisoning (PS), Risk assessment for diarrhoeic shellfish poisoning (DSP), Risk assessment for Amnesic shellfish poisoning (ASP), Risk assessment for neurologic shellfish poisoning (NSP), Risk assessment for azaspiracid shellfish poisoning (AZP), Risk assessment for ciguatera fish poisoning (CFP); Chapter 9: Conclusions and Recommendations; Conclusions, Recommendations.
Harmful Algal Blooms: A Compendium Desk Reference erläutert die Grundlagen der schädlichen Algenblüte (HAB) und bietet die notwendigen technischen Informationen, wenn es um unerwartete oder unbekannte schädliche Ereignisse in Zusammenhang mit Algen geht. Dieses Fachbuch behandelt die Gründe für die schädliche Algenblüte, erfolgreiche Management- und Monitoring-Programme, Kontroll-, Präventions- und Minderungsstrategien, die wirtschaftlichen Folgen, Gesundheitsrisiken sowie die Folgen für die Nahrungskette und Ökosysteme. Darüber hinaus bietet es ausführliche Informationen zu den häufigsten HAB-Arten. Harmful Algal Blooms: A Compendium Desk Reference ist ein unschätzbares Referenzwerk für Manager, Einsteiger in das Fachgebiet, Praktiker mit eingeschränkten Zugang zu wissenschaftlicher Literatur und alle, die schnell Zugriff auf Informationen benötigen, insbesondere vor dem Hintergrund neuartiger oder unerwarteter HAB-Ereignisse. Die drei Herausgeber gehören zu den weltweit führenden Forschern auf dem Fachgebiet. Führende Experten haben ebenfalls zu diesem Fachbuch beigetragen, das sich zu einem wichtigen Referenzwerk des Fachgebiets entwickeln wird, zumal das Thema immer mehr an Bedeutung gewinnt.
Marine Ecotoxicology: Current Knowledge and Future Issues is the first unified resource to cover issues related to contamination, responses, and testing techniques of saltwater from a toxicological perspective. With its unprecedented focus on marine environments and logical chapter progression, this book is useful to graduate students, ecotoxicologists, risk assessors, and regulators involved or interested in marine waters. As human interaction with these environments increases, understanding of the pollutants and toxins introduced into the oceans becomes ever more critical, and this book builds a foundation of knowledge to assist scientists in studying, monitoring, and making decisions that affect both marine environments and human health. A team of world renowned experts provide detailed analyses of the most common contaminants in marine environments and explain the design and purpose of toxicity testing methods, while exploring the future of ecotoxicology studies in relation to the world's oceans. As the threat of increasing pollution in marine environments becomes an ever more tangible reality, Marine Ecotoxicology offers insights and guidance to mitigate that threat. - Provides practical tools and methods for assessing and monitoring the accumulation and effects of contaminants in marine environments - Unites world renowned experts in marine ecotoxicology to deliver thorough and diverse perspectives - Builds the foundation required for risk assessors and regulators to adequately assess and monitor the impact of pollution in marine environments - Offers helpful insights and guidance to graduate students, ecotoxicologists, risk assessors, and regulators interested in mitigating threats to marine waters
In recent years, the field of Toxinology has expanded substantially. On the one hand it studies venomous animals, plants and micro organisms in detail to understand their mode of action on targets. While on the other, it explores the biochemical composition, genomics and proteomics of toxins and venoms to understand their three interaction with life forms (especially humans), development of antidotes and exploring their pharmacological potential. Therefore, Toxinology has deep linkages with biochemistry, molecular biology, anatomy and pharmacology. In addition, there is a fast developing applied subfield, clinical toxinology, which deals with understanding and managing medical effects of toxins on human body. Given the huge impact of toxin-based deaths globally, and the potential of venom in generation of drugs for so-far incurable diseases (for example, Diabetes, Chronic Pain), the continued research and growth of the field is imminent. This has led to the growth of research in the area and the consequent scholarly output by way of publications in journals and books. Despite this ever growing body of literature within biomedical sciences, there is still no all-inclusive reference work available that collects all of the important biochemical, biomedical and clinical insights relating to Toxinology. The Handbook of Toxinology aims to address this gap and cover the field of Toxinology comprehensively.
Containing cutting edge research on the hot topic of nanobiosensor, this book will become highly read Biosensor research has recently re-emerged as most vibrant area in recent years particularly after the advent of novel nanomaterials of multidimensional features and compositions. Nanomaterials of different types and striking properties have played a positive role in giving the boost and accelerated pace to biosensors development technology. Nanobiosensors - From Design to Applications covers several aspects of biosensors beginning from the basic concepts to advanced level research. It will help to bridge the gap between various aspects of biosensors development technology and applications. It covers biosensors related material in broad spectrum such as basic concepts, biosensors & their classification, biomarkers & their role in biosensors, nanostructures-based biosensors, applications of biosensors in human diseases, drug detection, toxins, and smart phone based biosensors. Nanobiosensors - From Design to Applications will prove a source of inspiration for research on biosensors, their local level development and consequently using for practical application in different industries such as food, biomedical diagnosis, pharmaceutics, agriculture, drug discovery, forensics, etc. * Discusses the latest technology and advances in the field of nanobiosensors and their applications in human diseases, drug detection, toxins * Offers a broad and comprehensive view of cutting-edge research on advanced materials such as carbon materials, nitride based nanomaterials, metal and metal oxide based nanomaterials for the fast-developing nanobiosensors research * Goes to a wide scientific and industry audience Nanobiosensors - From Design to Applications is a resource for polymer chemists, spectroscopists, materials scientists, physical chemists, surface chemists, and surface physicists.
The proliferation of harmful phytoplankton in marine ecosystems can cause massive fish kills, contaminate seafood with toxins, impact local and regional economies and dramatically affect ecological balance. Real-time observations are essential for effective short-term operational forecasting, but observation and modelling systems are still being developed. This volume provides guidance for developing real-time and near real-time sensing systems for observing and predicting plankton dynamics, including harmful algal blooms, in coastal waters. The underlying theory is explained and current trends in research and monitoring are discussed.Topics covered include: coastal ecosystems and dynamics of harmful algal blooms; theory and practical applications of in situ and remotely sensed optical detection of microalgal distributions and composition; theory and practical applications of in situ biological and chemical sensors for targeted species and toxin detection; integrated observing systems and platforms for detection; diagnostic and predictive modelling of ecosystems and harmful algal blooms, including data assimilation techniques; observational needs for the public and government; and future directions for research and operations.
This book consists of several thematic groups, including botany, zoology and topics related to human health. In regards to botany, chapters discuss endemic plants of Bolivia, Mexico, Italy and the Caribbean. They show the diversity, distribution and conservation of many species. In regards to zoology, the book highlights endemic primates and reptiles. Additionally, the book presents other environmental issues relevant to conservation. This volume also presents topics related to health, some of which are relevant for their implications on health and the economy, is the case of the presence of toxins in the Pacific plankton.All chapters present relevant content for future research or because they are fundamental for territorial management.