Elliptic Tales

Elliptic Tales

Author: Avner Ash

Publisher: Princeton University Press

Published: 2014-10-19

Total Pages: 275

ISBN-13: 0691163502

DOWNLOAD EBOOK

Elliptic Tales describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics--the Birch and Swinnerton-Dyer Conjecture. The Clay Mathematics Institute is offering a prize of $1 million to anyone who can discover a general solution to the problem. The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from some very deep--and often very mystifying--mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and, in the process, venture to the very frontiers of modern mathematics. Along the way, they give an informative and entertaining introduction to some of the most profoundmay appear simple, yet they arise from some very deep--and often very mystifying--mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and, in the process, venture to the very frontiers of modern mathematics. Along the way, they give an informative and entertaining introduction to some of the most profound discoveries of the last three centuries in algebraic geometry, abstract algebra, and number theory. They demonstrate how mathematics grows more abstract to tackle ever more challenging problems, and how each new generation of mathematicians builds on the accomplishments of those who preceded them. Ash and Gross fully explain how the Birch and Swinnerton-Dyer Conjecture sheds light on the number theory of elliptic curves, and how it provides a beautiful and startling connection between two very different objects arising from an elliptic curve, one based on calculus, the other on algebra.


Elliptic Tales

Elliptic Tales

Author: Avner Ash

Publisher: Princeton University Press

Published: 2012

Total Pages: 277

ISBN-13: 0691151199

DOWNLOAD EBOOK

Describes the latest developments in number theory by looking at the Birch and Swinnerton-Dyer Conjecture.


Elliptic Curves, Modular Forms, and Their L-functions

Elliptic Curves, Modular Forms, and Their L-functions

Author: Álvaro Lozano-Robledo

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 217

ISBN-13: 0821852426

DOWNLOAD EBOOK

Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.


Elliptic Curves

Elliptic Curves

Author: Henry McKean

Publisher: Cambridge University Press

Published: 1999-08-13

Total Pages: 300

ISBN-13: 9780521658171

DOWNLOAD EBOOK

An introductory 1997 account in the style of the original discoverers, treating the fundamental themes even-handedly.


Summing It Up

Summing It Up

Author: Avner Ash

Publisher: Princeton University Press

Published: 2018-01-30

Total Pages: 248

ISBN-13: 0691178518

DOWNLOAD EBOOK

The power and properties of numbers, from basic addition and sums of squares to cutting-edge theory We use addition on a daily basis—yet how many of us stop to truly consider the enormous and remarkable ramifications of this mathematical activity? Summing It Up uses addition as a springboard to present a fascinating and accessible look at numbers and number theory, and how we apply beautiful numerical properties to answer math problems. Mathematicians Avner Ash and Robert Gross explore addition's most basic characteristics as well as the addition of squares and other powers before moving onward to infinite series, modular forms, and issues at the forefront of current mathematical research. Ash and Gross tailor their succinct and engaging investigations for math enthusiasts of all backgrounds. Employing college algebra, the first part of the book examines such questions as, can all positive numbers be written as a sum of four perfect squares? The second section of the book incorporates calculus and examines infinite series—long sums that can only be defined by the concept of limit, as in the example of 1+1/2+1/4+. . .=? With the help of some group theory and geometry, the third section ties together the first two parts of the book through a discussion of modular forms—the analytic functions on the upper half-plane of the complex numbers that have growth and transformation properties. Ash and Gross show how modular forms are indispensable in modern number theory, for example in the proof of Fermat's Last Theorem. Appropriate for numbers novices as well as college math majors, Summing It Up delves into mathematics that will enlighten anyone fascinated by numbers.


Fearless Symmetry

Fearless Symmetry

Author: Avner Ash

Publisher: Princeton University Press

Published: 2008-08-24

Total Pages: 308

ISBN-13: 0691138710

DOWNLOAD EBOOK

Written in a friendly style for a general mathematically literate audience, 'Fearless Symmetry', starts with the basic properties of integers and permutations and reaches current research in number theory.


Langlands Correspondence for Loop Groups

Langlands Correspondence for Loop Groups

Author: Edward Frenkel

Publisher: Cambridge University Press

Published: 2007-06-28

Total Pages: 5

ISBN-13: 0521854431

DOWNLOAD EBOOK

The first account of local geometric Langlands Correspondence, a new area of mathematical physics developed by the author.


Modern Cryptography and Elliptic Curves

Modern Cryptography and Elliptic Curves

Author: Thomas R. Shemanske

Publisher: American Mathematical Soc.

Published: 2017-07-31

Total Pages: 266

ISBN-13: 1470435829

DOWNLOAD EBOOK

This book offers the beginning undergraduate student some of the vista of modern mathematics by developing and presenting the tools needed to gain an understanding of the arithmetic of elliptic curves over finite fields and their applications to modern cryptography. This gradual introduction also makes a significant effort to teach students how to produce or discover a proof by presenting mathematics as an exploration, and at the same time, it provides the necessary mathematical underpinnings to investigate the practical and implementation side of elliptic curve cryptography (ECC). Elements of abstract algebra, number theory, and affine and projective geometry are introduced and developed, and their interplay is exploited. Algebra and geometry combine to characterize congruent numbers via rational points on the unit circle, and group law for the set of points on an elliptic curve arises from geometric intuition provided by Bézout's theorem as well as the construction of projective space. The structure of the unit group of the integers modulo a prime explains RSA encryption, Pollard's method of factorization, Diffie–Hellman key exchange, and ElGamal encryption, while the group of points of an elliptic curve over a finite field motivates Lenstra's elliptic curve factorization method and ECC. The only real prerequisite for this book is a course on one-variable calculus; other necessary mathematical topics are introduced on-the-fly. Numerous exercises further guide the exploration.


Single Digits

Single Digits

Author: Marc Chamberland

Publisher: Princeton University Press

Published: 2017-05-30

Total Pages: 240

ISBN-13: 0691175691

DOWNLOAD EBOOK

"The numbers one through nine have remarkable mathematical properties and characteristics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? Are there really "six degrees of separation" between all pairs of people? And how can any map need only four colors to ensure that no regions of the same color touch? In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics."--Jacket.


The Number Mysteries

The Number Mysteries

Author: Marcus du Sautoy

Publisher: St. Martin's Press

Published: 2011-05-24

Total Pages: 273

ISBN-13: 0230120288

DOWNLOAD EBOOK

Every time we download music, take a flight across the Atlantic or talk on our cell phones, we are relying on great mathematical inventions. In The Number Mysteries, one of our generation's foremost mathematicians Marcus du Sautoy offers a playful and accessible examination of numbers and how, despite efforts of the greatest minds, the most fundamental puzzles of nature remain unsolved. Du Sautoy tells about the quest to predict the future—from the flight of asteroids to an impending storm, from bending a ball like Beckham to forecasting population growth. He brings to life the beauty behind five mathematical puzzles that have contributed to our understanding of the world around us and have helped develop the technology to cope with it. With loads of games to play and puzzles to solve, this is a math book for everyone.