Elliptic Curves, Hilbert Modular Forms and Galois Deformations

Elliptic Curves, Hilbert Modular Forms and Galois Deformations

Author: Laurent Berger

Publisher: Springer Science & Business Media

Published: 2013-06-13

Total Pages: 257

ISBN-13: 3034806183

DOWNLOAD EBOOK

The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year. The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at p that arise naturally in Galois deformation theory. The notes by Gebhard Böckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l ≠ p and local deformations at p which are flat. In the last section,the results of Böckle and Kisin on presentations of global deformation rings over local ones are discussed. The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients. The notes by Lassina Dembélé and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods depend on the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed. The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification.


The 1-2-3 of Modular Forms

The 1-2-3 of Modular Forms

Author: Jan Hendrik Bruinier

Publisher: Springer Science & Business Media

Published: 2008-02-10

Total Pages: 273

ISBN-13: 3540741194

DOWNLOAD EBOOK

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.


The Computational and Theoretical Aspects of Elliptic Curves

The Computational and Theoretical Aspects of Elliptic Curves

Author: Zhibin Liang

Publisher: Springer

Published: 2019-05-22

Total Pages: 98

ISBN-13: 9811366640

DOWNLOAD EBOOK

This volume presents a collection of results related to the BSD conjecture, based on the first two India-China conferences on this topic. It provides an overview of the conjecture and a few special cases where the conjecture is proved. The broad theme of the two conferences was “Theoretical and Computational Aspects of the Birch and Swinnerton-Dyer Conjecture”. The first was held at Beijing International Centre for Mathematical Research (BICMR) in December 2014 and the second was held at the International Centre for Theoretical Sciences (ICTS), Bangalore, India in December 2016. Providing a broad overview of the subject, the book is a valuable resource for young researchers wishing to work in this area. The articles have an extensive list of references to enable diligent researchers to gain an idea of the current state of art on this conjecture.


Geometric Modular Forms and Elliptic Curves

Geometric Modular Forms and Elliptic Curves

Author: Haruzo Hida

Publisher: World Scientific

Published: 2012

Total Pages: 468

ISBN-13: 9814368644

DOWNLOAD EBOOK

This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura?Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction.In this new second edition, a detailed description of Barsotti?Tate groups (including formal Lie groups) is added to Chapter 1. As an application, a down-to-earth description of formal deformation theory of elliptic curves is incorporated at the end of Chapter 2 (in order to make the proof of regularity of the moduli of elliptic curve more conceptual), and in Chapter 4, though limited to ordinary cases, newly incorporated are Ribet's theorem of full image of modular p-adic Galois representation and its generalization to ?big? ?-adic Galois representations under mild assumptions (a new result of the author). Though some of the striking developments described above is out of the scope of this introductory book, the author gives a taste of present day research in the area of Number Theory at the very end of the book (giving a good account of modularity theory of abelian ?-varieties and ?-curves).


Hilbert Modular Forms and Iwasawa Theory

Hilbert Modular Forms and Iwasawa Theory

Author: Haruzo Hida

Publisher: Clarendon Press

Published: 2006-06-15

Total Pages: 420

ISBN-13: 0191513873

DOWNLOAD EBOOK

The 1995 work of Wiles and Taylor-Wiles opened up a whole new technique in algebraic number theory and, a decade on, the waves caused by this incredibly important work are still being felt. This book, authored by a leading researcher, describes the striking applications that have been found for this technique. In the book, the deformation theoretic techniques of Wiles-Taylor are first generalized to Hilbert modular forms (following Fujiwara's treatment), and some applications found by the author are then discussed. With many exercises and open questions given, this text is ideal for researchers and graduate students entering this research area.


Computations with Modular Forms

Computations with Modular Forms

Author: Gebhard Böckle

Publisher: Springer Science & Business Media

Published: 2014-01-23

Total Pages: 377

ISBN-13: 3319038478

DOWNLOAD EBOOK

This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, an efficient algorithm for special values of p-adic Rankin triple product L-functions, arithmetic aspects and experimental data of Bianchi groups, a theoretical study of the real Jacobian of modular curves, results on computing weight one modular forms, and more.


Modular Forms: A Classical And Computational Introduction (2nd Edition)

Modular Forms: A Classical And Computational Introduction (2nd Edition)

Author: Lloyd James Peter Kilford

Publisher: World Scientific Publishing Company

Published: 2015-03-12

Total Pages: 252

ISBN-13: 1783265477

DOWNLOAD EBOOK

Modular Forms is a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to various subjects, such as the theory of quadratic forms, the proof of Fermat's Last Theorem and the approximation of π. The text gives a balanced overview of both the theoretical and computational sides of its subject, allowing a variety of courses to be taught from it.This second edition has been revised and updated. New material on the future of modular forms as well as a chapter about longer-form projects for students has also been added.


Arithmetic Geometry, Number Theory, and Computation

Arithmetic Geometry, Number Theory, and Computation

Author: Jennifer S. Balakrishnan

Publisher: Springer Nature

Published: 2022-03-15

Total Pages: 587

ISBN-13: 3030809145

DOWNLOAD EBOOK

This volume contains articles related to the work of the Simons Collaboration “Arithmetic Geometry, Number Theory, and Computation.” The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research. Specific topics include● algebraic varieties over finite fields● the Chabauty-Coleman method● modular forms● rational points on curves of small genus● S-unit equations and integral points.


Modular Forms and Fermat’s Last Theorem

Modular Forms and Fermat’s Last Theorem

Author: Gary Cornell

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 592

ISBN-13: 1461219744

DOWNLOAD EBOOK

This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.