Elliptic Curves, Modular Forms, and Their L-functions

Elliptic Curves, Modular Forms, and Their L-functions

Author: Álvaro Lozano-Robledo

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 217

ISBN-13: 0821852426

DOWNLOAD EBOOK

Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.


Introduction to Elliptic Curves and Modular Forms

Introduction to Elliptic Curves and Modular Forms

Author: Neal I. Koblitz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 262

ISBN-13: 1461209099

DOWNLOAD EBOOK

The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the modern theory, covering such topics as the Hasse-Weil L-function and the conjecture of Birch and Swinnerton-Dyer. This new edition details the current state of knowledge of elliptic curves.


A First Course in Modular Forms

A First Course in Modular Forms

Author: Fred Diamond

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 462

ISBN-13: 0387272267

DOWNLOAD EBOOK

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.


Geometric Modular Forms and Elliptic Curves

Geometric Modular Forms and Elliptic Curves

Author: Haruzo Hida

Publisher: World Scientific

Published: 2012

Total Pages: 468

ISBN-13: 9814368652

DOWNLOAD EBOOK

1. An algebro-geometric tool box. 1.1. Sheaves. 1.2. Schemes. 1.3. Projective schemes. 1.4. Categories and functors. 1.5. Applications of the key-lemma. 1.6. Group schemes. 1.7. Cartier duality. 1.8. Quotients by a group scheme. 1.9. Morphisms. 1.10. Cohomology of coherent sheaves. 1.11. Descent. 1.12. Barsotti-Tate groups. 1.13. Formal scheme -- 2. Elliptic curves. 2.1. Curves and divisors. 2.2. Elliptic curves. 2.3. Geometric modular forms of level 1. 2.4. Elliptic curves over C. 2.5. Elliptic curves over p-adic fields. 2.6. Level structures. 2.7. L-functions of elliptic curves. 2.8. Regularity. 2.9. p-ordinary moduli problems. 2.10. Deformation of elliptic curves -- 3. Geometric modular forms. 3.1. Integrality. 3.2. Vertical control theorem. 3.3. Action of GL(2) on modular forms -- 4. Jacobians and Galois representations. 4.1. Jacobians of stable curves. 4.2. Modular Galois representations. 4.3. Fullness of big Galois representations -- 5. Modularity problems. 5.1. Induced and extended Galois representations. 5.2. Some other solutions. 5.3. Modularity of Abelian Q-varieties


Elliptic Curves, Hilbert Modular Forms and Galois Deformations

Elliptic Curves, Hilbert Modular Forms and Galois Deformations

Author: Laurent Berger

Publisher: Springer Science & Business Media

Published: 2013-06-13

Total Pages: 257

ISBN-13: 3034806183

DOWNLOAD EBOOK

The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year. The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at p that arise naturally in Galois deformation theory. The notes by Gebhard Böckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l ≠ p and local deformations at p which are flat. In the last section,the results of Böckle and Kisin on presentations of global deformation rings over local ones are discussed. The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients. The notes by Lassina Dembélé and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods depend on the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed. The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification.


The 1-2-3 of Modular Forms

The 1-2-3 of Modular Forms

Author: Jan Hendrik Bruinier

Publisher: Springer Science & Business Media

Published: 2008-02-10

Total Pages: 273

ISBN-13: 3540741194

DOWNLOAD EBOOK

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.


Invitation to the Mathematics of Fermat-Wiles

Invitation to the Mathematics of Fermat-Wiles

Author: Yves Hellegouarch

Publisher: Elsevier

Published: 2001-09-24

Total Pages: 395

ISBN-13: 0080478778

DOWNLOAD EBOOK

Assuming only modest knowledge of undergraduate level math, Invitation to the Mathematics of Fermat-Wiles presents diverse concepts required to comprehend Wiles' extraordinary proof. Furthermore, it places these concepts in their historical context. This book can be used in introduction to mathematics theories courses and in special topics courses on Fermat's last theorem. It contains themes suitable for development by students as an introduction to personal research as well as numerous exercises and problems. However, the book will also appeal to the inquiring and mathematically informed reader intrigued by the unraveling of this fascinating puzzle. Rigorously presents the concepts required to understand Wiles' proof, assuming only modest undergraduate level math Sets the math in its historical context Contains several themes that could be further developed by student research and numerous exercises and problems Written by Yves Hellegouarch, who himself made an important contribution to the proof of Fermat's last theorem


Rational Points on Modular Elliptic Curves

Rational Points on Modular Elliptic Curves

Author: Henri Darmon

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 146

ISBN-13: 0821828681

DOWNLOAD EBOOK

The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.


Elliptic Curves, Modular Forms and Iwasawa Theory

Elliptic Curves, Modular Forms and Iwasawa Theory

Author: David Loeffler

Publisher: Springer

Published: 2017-01-15

Total Pages: 494

ISBN-13: 3319450328

DOWNLOAD EBOOK

Celebrating one of the leading figures in contemporary number theory – John H. Coates – on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference Elliptic Curves, Modular Forms and Iwasawa Theory, held in honour of the 70th birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.


Modular Forms and Fermat’s Last Theorem

Modular Forms and Fermat’s Last Theorem

Author: Gary Cornell

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 592

ISBN-13: 1461219744

DOWNLOAD EBOOK

This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.