Essential Classical Mechanics

Essential Classical Mechanics

Author: Choonkyu Lee

Publisher: World Scientific Publishing Company

Published: 2018-04-17

Total Pages: 717

ISBN-13: 9813234660

DOWNLOAD EBOOK

'The authors deliver a highly readable text which should assure a continued supply of practitioners of classical mechanics and its applications.'Contemporary PhysicsThis is a book on intermediate classical mechanics. In this book, classical mechanics is presented as a useful tool to analyze the physical universe and also as the base on which the whole pyramid of modern physics has been erected. Various mechanical concepts are developed in a highly logical manner, with relatively thorough treatments on mathematical procedures and many physically interesting applications. Connections to more modern theoretical developments (including statistical physics, relativity, and quantum mechanics) are emphasized.


Elements Of Fluid Dynamics

Elements Of Fluid Dynamics

Author: Guido Buresti

Publisher: World Scientific Publishing Company

Published: 2012-06-26

Total Pages: 603

ISBN-13: 1908977043

DOWNLOAD EBOOK

Elements of Fluid Dynamics is intended to be a basic textbook, useful for undergraduate and graduate students in different fields of engineering, as well as in physics and applied mathematics. The main objective of the book is to provide an introduction to fluid dynamics in a simultaneously rigorous and accessible way, and its approach follows the idea that both the generation mechanisms and the main features of the fluid dynamic loads can be satisfactorily understood only after the equations of fluid motion and all their physical and mathematical implications have been thoroughly assimilated. Therefore, the complete equations of motion of a compressible viscous fluid are first derived and their physical and mathematical aspects are thoroughly discussed. Subsequently, the necessity of simplified treatments is highlighted, and a detailed analysis is made of the assumptions and range of applicability of the incompressible flow model, which is then adopted for most of the rest of the book. Furthermore, the role of the generation and dynamics of vorticity on the development of different flows is emphasized, as well as its influence on the characteristics, magnitude and predictability of the fluid dynamic loads acting on moving bodies.The book is divided into two parts which differ in target and method of utilization. The first part contains the fundamentals of fluid dynamics that are essential for any student new to the subject. This part of the book is organized in a strictly sequential way, i.e. each chapter is assumed to be carefully read and studied before the next one is tackled, and its aim is to lead the reader in understanding the origin of the fluid dynamic forces on different types of bodies. The second part of the book is devoted to selected topics that may be of more specific interest to different students. In particular, some theoretical aspects of incompressible flows are first analysed and classical applications of fluid dynamics such as the aerodynamics of airfoils, wings and bluff bodies are then described. The one-dimensional treatment of compressible flows is finally considered, together with its application to the study of the motion in ducts.


Elements of Computational Fluid Dynamics

Elements of Computational Fluid Dynamics

Author: John D. Ramshaw

Publisher: World Scientific

Published: 2011

Total Pages: 140

ISBN-13: 1848167059

DOWNLOAD EBOOK

This book is a brief introduction to the fundamental concepts of computational fluid dynamics (CFD). It is addressed to beginners, and presents the ABC's or bare essentials of CFD in their simplest and most transparent form. The approach taken is to describe the principal analytical tools required, including truncation-error and stability analyses, followed by the basic elements or building blocks of CFD, which are numerical methods for treating sources, diffusion, convection, and pressure waves. Finally, it is shown how those ingredients may be combined to obtain self-contained numerical methods for solving the full equations of fluid dynamics. The book should be suitable for self-study, as a textbook for CFD short courses, and as a supplement to more comprehensive CFD and fluid dynamics texts.


Fluid Mechanics

Fluid Mechanics

Author: Pijush K. Kundu

Publisher: Academic Press

Published: 2012

Total Pages: 919

ISBN-13: 0123821002

DOWNLOAD EBOOK

Suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level, this book presents the study of how fluids behave and interact under various forces and in various applied situations - whether in the liquid or gaseous state or both.


Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Author: Ben Q. Li

Publisher: Springer Science & Business Media

Published: 2006-06-29

Total Pages: 587

ISBN-13: 1846282055

DOWNLOAD EBOOK

Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.


The Aero- and Hydromechanics of Keel Yachts

The Aero- and Hydromechanics of Keel Yachts

Author: J.W. Slooff

Publisher: Springer

Published: 2015-04-25

Total Pages: 645

ISBN-13: 331913275X

DOWNLOAD EBOOK

How and why does sail boat performance depend on the configuration and trim of boat and sails? This book provides the yachtsman with answers in a relatively straightforward account of the physical mechanisms of sailing. It presents an accessible overview of the fluid dynamic aspects of sailing and sailing technology, addressing both aeromechanics and hydromechanics. Readers are provided with the basic principles of physics and general mechanics that will assist their understanding of the fluid mechanics of sailing yachts. Rich appendices cover not only in-depth,mathematical-physical treatments and derivations for those wishing to explore further, but also helpful summaries of basic mathematical notions for those wishing to refresh their knowledge. This work explores keel yachts, specifically single-masted mono-hulls with ‘fore-and-aft’, Bermuda-rigged sails. However, much of it is applicable to other types of sailing vessels such as multi-hulls, yachts with multiple masts, windsurf boards and the like. Yachtsmen, yacht designers and professionals of sailing technology will all find something of interest in this work which provides explanations of the mechanics of sailing in a way that is scientifically justified, whilst remaining appealing to those wishing to use their knowledge on-board a sailing vessel. For some years I’m teaching a course on “Sailing Yacht Design” in the master class of yacht design. Actually, I’ve found your book the best one about physics of a sailing yacht I’ve ever read. Edward Canepa, assistant professor in Fluid Machinery at the University of Genova (Italy) ...very impressed, no wonder it took so long. It is “everything I ever wanted to know about sailing but was afraid to ask” ! Frank Woodward, former computational fluid dynamicist at the Boeing Company and Analytical Methods Inc., and a cruising yachtsman


Introductory Fluid Mechanics

Introductory Fluid Mechanics

Author: Joseph Katz

Publisher: Cambridge University Press

Published: 2010-08-31

Total Pages:

ISBN-13: 1139490087

DOWNLOAD EBOOK

The objective of this introductory text is to familiarise students with the basic elements of fluid mechanics so that they will be familiar with the jargon of the discipline and the expected results. At the same time, this book serves as a long-term reference text, contrary to the oversimplified approach occasionally used for such introductory courses. The second objective is to provide a comprehensive foundation for more advanced courses in fluid mechanics (within disciplines such as mechanical or aerospace engineering). In order to avoid confusing the students, the governing equations are introduced early, and the assumptions leading to the various models are clearly presented. This provides a logical hierarchy and explains the interconnectivity between the various models. Supporting examples demonstrate the principles and provide engineering analysis tools for many engineering calculations.


Characteristics Finite Element Methods in Computational Fluid Dynamics

Characteristics Finite Element Methods in Computational Fluid Dynamics

Author: Joe Iannelli

Publisher: Springer Science & Business Media

Published: 2006-09-24

Total Pages: 744

ISBN-13: 3540453431

DOWNLOAD EBOOK

This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.