Elements of Vector Algebra

Elements of Vector Algebra

Author: Rishi Kumar Jha, Anshuman Singh

Publisher: Notion Press

Published: 2018-06-05

Total Pages: 101

ISBN-13: 1642493600

DOWNLOAD EBOOK

The book, Elements of Vector Algebra, is written for high school and engineering students who wish to gain elementary knowledge of vectors. Algebraic and geometric interpretations of vectors, along with examples and exercises in mathematical and engineering applications, have been provided to help develop a clear understanding of the vector concepts. The book provides thorough treatment of elementary vector operators and their algebra, product of two and three vectors and various engineering and scientific applications involving these concepts. At the end of each chapter, comprehensive exercises with varying degrees of difficulty have been provided to further hone the concepts. Interdisciplinary problems that have practical applications can also be found in this book catering to the ever-extending scope of vector algebra.


Elementary Linear Algebra

Elementary Linear Algebra

Author: Stephen Andrilli

Publisher: Academic Press

Published: 2010-02-04

Total Pages: 773

ISBN-13: 0080886256

DOWNLOAD EBOOK

Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, exploring a comprehensive range of topics. Ancillary list:* Maple Algorithmic testing- Maple TA- www.maplesoft.com - Includes a wide variety of applications, technology tips and exercises, organized in chart format for easy reference - More than 310 numbered examples in the text at least one for each new concept or application - Exercise sets ordered by increasing difficulty, many with multiple parts for a total of more than 2135 questions - Provides an early introduction to eigenvalues/eigenvectors - A Student solutions manual, containing fully worked out solutions and instructors manual available


Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra

Author: Stephen Boyd

Publisher: Cambridge University Press

Published: 2018-06-07

Total Pages: 477

ISBN-13: 1316518965

DOWNLOAD EBOOK

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.


A Vector Space Approach to Geometry

A Vector Space Approach to Geometry

Author: Melvin Hausner

Publisher: Courier Dover Publications

Published: 2018-10-17

Total Pages: 417

ISBN-13: 0486835391

DOWNLOAD EBOOK

A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.


Elementary Vectors

Elementary Vectors

Author: E. Œ. Wolstenholme

Publisher: Elsevier

Published: 2014-05-18

Total Pages: 129

ISBN-13: 1483138437

DOWNLOAD EBOOK

Elementary Vectors, Third Edition serves as an introductory course in vector analysis and is intended to present the theoretical and application aspects of vectors. The book covers topics that rigorously explain and provide definitions, principles, equations, and methods in vector analysis. Applications of vector methods to simple kinematical and dynamical problems; central forces and orbits; and solutions to geometrical problems are discussed as well. This edition of the text also provides an appendix, intended for students, which the author hopes to bridge the gap between theory and application in the real world. The text will be a superb reference material for students of higher mathematics, physics, and engineering.


Vector Spaces and Matrices

Vector Spaces and Matrices

Author: Robert M. Thrall

Publisher: Courier Corporation

Published: 2014-01-15

Total Pages: 340

ISBN-13: 0486321053

DOWNLOAD EBOOK

Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.


Linear Algebra Done Right

Linear Algebra Done Right

Author: Sheldon Axler

Publisher: Springer Science & Business Media

Published: 1997-07-18

Total Pages: 276

ISBN-13: 9780387982595

DOWNLOAD EBOOK

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.


About Vectors

About Vectors

Author: Banesh Hoffmann

Publisher: Courier Corporation

Published: 1975-01-01

Total Pages: 150

ISBN-13: 9780486604893

DOWNLOAD EBOOK

From his unusual beginning in "Defining a vector" to his final comments on "What then is a vector?" author Banesh Hoffmann has written a book that is provocative and unconventional. In his emphasis on the unresolved issue of defining a vector, Hoffmann mixes pure and applied mathematics without using calculus. The result is a treatment that can serve as a supplement and corrective to textbooks, as well as collateral reading in all courses that deal with vectors. Major topics include vectors and the parallelogram law; algebraic notation and basic ideas; vector algebra; scalars and scalar products; vector products and quotients of vectors; and tensors. The author writes with a fresh, challenging style, making all complex concepts readily understandable. Nearly 400 exercises appear throughout the text. Professor of Mathematics at Queens College at the City University of New York, Banesh Hoffmann is also the author of The Strange Story of the Quantum and other important books. This volume provides much that is new for both students and their instructors, and it will certainly generate debate and discussion in the classroom.