Science in the Beginning

Science in the Beginning

Author: Jay Wile

Publisher:

Published: 2013-05-01

Total Pages: 299

ISBN-13: 9780989042406

DOWNLOAD EBOOK

Science in the context of the seven days of creation presented in the Bible. This textbook uses activities to reinforce scientific principles presented.


Building Foundations of Scientific Understanding

Building Foundations of Scientific Understanding

Author: Bernard J. Nebel

Publisher:

Published: 2007-11

Total Pages: 0

ISBN-13: 9781432706104

DOWNLOAD EBOOK

This is The most comprehensive science curriculum for beginning learners that you will find anywhere * Here are 41 lesson plans that cover all major areas of science. * Lessons are laid out as stepping stones that build knowledge and understanding logically and systematically. * Child-centered, hands-on activities at the core of all lessons bring children to observe, think, and reason. * Interest is maintained and learning is solidified by constantly connecting lessons with children's real-world experience * Skills of inquiry become habits of mind as they are used throughout. * Lessons integrate reading, writing, geography, and other subjects. * Standards, including developing a broader, supportive community of science learners come about as natural by-products of learning science in an organized way. Particular background or experience is not required. Instructions include guiding students to question, observe, think, interpret, and draw rational conclusions in addition to performing the activity. Teachers can learn along with their students and be exceptional role models in doing so. Need for special materials is minimized. Personal, on line, support is available free of charge (see front matter).


Science Education Through Multiple Literacies

Science Education Through Multiple Literacies

Author: Joseph Krajcik

Publisher: Harvard Education Press

Published: 2022-10-18

Total Pages: 268

ISBN-13: 1682536645

DOWNLOAD EBOOK

Science Education Through Multiple Literacies explores how the use of project-based learning in elementary science education fosters a lifelong scientific mindset in students. The book provides educators with the teaching practices to help students develop an overall science literacy that aligns with Next Generation Science Standards. Editors Joseph Krajcik and Barbara Schneider and the book’s contributors offer a comprehensive overview of the multifaceted approach to science learning. Multiple Literacies in Project-Based Learning (ML-PBL) interweaves scientific ideas and practices, language literacy, and mathematical thinking. ML-PBL supports the teaching of science by paralleling what scientists do: it engages students and their teachers in investigating real-world questions, constructing models, and using evidence to evaluate claims. The book presents compelling case studies of ML-PBL, how teachers use this approach, and how the ML-PBL transforms the classroom into an environment that builds and supports academic and student social-emotional learning. Representing both urban and suburban schools, the case studies include classroom observations, student and teacher interviews, and student artifacts to illustrate how to make science relevant in students’ lives. Krajcik and Schneider note that application of ML-PBL requires intentional instructional practices and new ways of thinking about what it means to learn. Easing this challenge, the editors equip elementary science teachers with curricular resources including high-quality instructional materials, professional-learning exercises, and formative assessments. Science Education Through Multiple Literacies provides the necessary elements to transform science teaching and learning so that students learn the skills to navigate with confidence through our complex world.


Visible Learning for Science, Grades K-12

Visible Learning for Science, Grades K-12

Author: John Almarode

Publisher: Corwin Press

Published: 2018-02-15

Total Pages: 131

ISBN-13: 1506394191

DOWNLOAD EBOOK

In the best science classrooms, teachers see learning through the eyes of their students, and students view themselves as explorers. But with so many instructional approaches to choose from—inquiry, laboratory, project-based learning, discovery learning—which is most effective for student success? In Visible Learning for Science, the authors reveal that it’s not which strategy, but when, and plot a vital K-12 framework for choosing the right approach at the right time, depending on where students are within the three phases of learning: surface, deep, and transfer. Synthesizing state-of-the-art science instruction and assessment with over fifteen years of John Hattie’s cornerstone educational research, this framework for maximum learning spans the range of topics in the life and physical sciences. Employing classroom examples from all grade levels, the authors empower teachers to plan, develop, and implement high-impact instruction for each phase of the learning cycle: Surface learning: when, through precise approaches, students explore science concepts and skills that give way to a deeper exploration of scientific inquiry. Deep learning: when students engage with data and evidence to uncover relationships between concepts—students think metacognitively, and use knowledge to plan, investigate, and articulate generalizations about scientific connections. Transfer learning: when students apply knowledge of scientific principles, processes, and relationships to novel contexts, and are able to discern and innovate to solve complex problems. Visible Learning for Science opens the door to maximum-impact science teaching, so that students demonstrate more than a year’s worth of learning for a year spent in school.


A Guide to Teaching Elementary Science

A Guide to Teaching Elementary Science

Author: Yvette F. Greenspan

Publisher: Springer

Published: 2015-12-21

Total Pages: 161

ISBN-13: 9463003673

DOWNLOAD EBOOK

Nationally and internationally, educators now understand the critical importance of STEM subjects—science, technology, engineering, and mathematics. Today, the job of the classroom science teacher demands finding effective ways to meet current curricula standards and prepare students for a future in which a working knowledge of science and technology will dominate. But standards and goals don’t mean a thing unless we: • grab students’ attention; • capture and deepen children’s natural curiosity; • create an exciting learning environment that engages the learner; and • make science come alive inside and outside the classroom setting. A Guide to Teaching Elementary Science: Ten Easy Steps gives teachers, at all stages of classroom experience, exactly what the title implies. Written by lifelong educator Yvette Greenspan, this book is designed for busy classroom teachers who face tough conditions, from overcrowded classrooms to shrinking budgets, and too often end up anxious and overwhelmed by the challenges ahead and their desire for an excellent science program. This book: • helps teachers develop curricula compatible with the Next Generation Science Standards and the Common Core Standards; • provides easy-to-implement steps for setting up a science classroom, plus strategies for using all available resources to assemble needed teaching materials; • offers detailed sample lesson plans in each STEM subject, adaptable to age and ability and designed to embrace the needs of all learners; and • presents bonus information about organizing field trips and managing science fairs. Without question, effective science curricula can help students develop critical thinking skills and a lifelong passion for science. Yvette Greenspan received her doctorate degree in science education and has developed science curriculum at all levels. A career spent in teaching elementary students in an urban community, she now instructs college students, sharing her love for the teaching and learning of science. She considers it essential to encourage today’s students to be active learners and to concentrate on STEM topics that will help prepare them for the real world.


The Literature Review

The Literature Review

Author: Diana Ridley

Publisher: SAGE Publications

Published: 2012-07-31

Total Pages: 233

ISBN-13: 1446201430

DOWNLOAD EBOOK

This Second Edition of Diana Ridley’s bestselling guide to the literature review outlines practical strategies for reading and note taking, and guides the reader on how to conduct a systematic search of the available literature, and uses cases and examples throughout to demonstrate best practice in writing and presenting the review. New to this edition are examples drawn from a wide range of disciplines, a new chapter on conducting a systematic review, increased coverage of issues of evaluating quality and conducting reviews using online sources and online literature and enhanced guidance in dealing with copyright and permissions issues.


Good Practice In Science Teaching: What Research Has To Say

Good Practice In Science Teaching: What Research Has To Say

Author: Osborne, Jonathan

Publisher: McGraw-Hill Education (UK)

Published: 2010-05-01

Total Pages: 367

ISBN-13: 0335238580

DOWNLOAD EBOOK

This volume provides a summary of the findings that educational research has to offer on good practice in school science teaching. It offers an overview of scholarship and research in the field, and introduces the ideas and evidence that guide it.