This book provides a fascinating and inspirational read for anyone with an interest in advanced mathematics, written by the great German mathematician Felix Klein. It is highly recommended for inclusion on the bookshelf of anyone with an interest in the subject.
These three volumes constitute the first complete English translation of Felix Klein’s seminal series “Elementarmathematik vom höheren Standpunkte aus”. “Complete” has a twofold meaning here: First, there now exists a translation of volume III into English, while until today the only translation had been into Chinese. Second, the English versions of volume I and II had omitted several, even extended parts of the original, while we now present a complete revised translation into modern English. The volumes, first published between 1902 and 1908, are lecture notes of courses that Klein offered to future mathematics teachers, realizing a new form of teacher training that remained valid and effective until today: Klein leads the students to gain a more comprehensive and methodological point of view on school mathematics. The volumes enable us to understand Klein’s far-reaching conception of elementarisation, of the “elementary from a higher standpoint”, in its implementation for school mathematics./div This volume II presents a paradigmatic realisation of Klein’s approach of elementarisation for teacher education. It is shown how the various geometries, elaborated particularly since the beginning of the 19th century, are revealed as becoming unified in a new restructured geometry. As Klein liked to stress: “Projective geometry is all geometry”. Non-Euclidean geometry proves to constitute a part of this unifying process. The teaching of geometry is discussed in a separate chapter, which provides moreover important information on the history of geometry teaching and an international comparison.
This open access book provides an overview of Felix Klein's ideas, highlighting developments in university teaching and school mathematics related to Klein's thoughts, stemming from the last century. It discusses the meaning, importance and the legacy of Klein's ideas today and in the future, within an international, global context. Presenting extended versions of the talks at the Thematic Afternoon at ICME-13, the book shows that many of Klein's ideas can be reinterpreted in the context of the current situation, and offers tips and advice for dealing with current problems in teacher education and teaching mathematics in secondary schools. It proves that old ideas are timeless, but that it takes competent, committed and assertive individuals to bring these ideas to life. Throughout his professional life, Felix Klein emphasised the importance of reflecting upon mathematics teaching and learning from both a mathematical and a psychological or educational point of view. He also strongly promoted the modernisation of mathematics in the classroom, and developed ideas on university lectures for student teachers, which he later consolidated at the beginning of the last century in the three books on elementary mathematics from a higher standpoint. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries.
This well-known work covers the solution of quintics in terms of the rotations of a regular icosahedron around the axes of its symmetry. Its two-part presentation begins with discussions of the theory of the icosahedron itself; regular solids and theory of groups; introductions of (x + iy); a statement and examination of the fundamental problem, with a view of its algebraic character; and general theorems and a survey of the subject. The second part explores the theory of equations of the fifth degree and their historical development; introduces geometrical material; and covers canonical equations of the fifth degree, the problem of A's and Jacobian equations of the sixth degree, and the general equation of the fifth degree. Second revised edition with additional corrections.
An exciting look at the world of elementary mathematics Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics--but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become "elementary." Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits. From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of "reverse mathematics" confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics. Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries.
These three volumes constitute the first complete English translation of Felix Klein’s seminal series “Elementarmathematik vom höheren Standpunkte aus”. “Complete” has a twofold meaning here: First, there now exists a translation of volume III into English, while until today the only translation had been into Chinese. Second, the English versions of volume I and II had omitted several, even extended parts of the original, while we now present a complete revised translation into modern English. The volumes, first published between 1902 and 1908, are lecture notes of courses that Klein offered to future mathematics teachers, realizing a new form of teacher training that remained valid and effective until today: Klein leads the students to gain a more comprehensive and methodological point of view on school mathematics. The volumes enable us to understand Klein’s far-reaching conception of elementarisation, of the “elementary from a higher standpoint”, in its implementation for school mathematics. In Volume III, Klein explores the relationship between precision and approximation mathematics. He crosses the various fields of mathematics – from functions in one and two variables to practical geometry to space curves and surfaces – underlining the relation between the exactness of the idealised concepts and the approximations to be considered in applications. Logical procedures are confronted with the way in which concepts arise starting from observations. It is a comparison between properties pertaining only to the theoretical field of abstract mathematics and properties that can be grasped by intuition. The final part, which concerns gestalt relations of curves and surfaces, shows Klein to be the master of the art of description of geometric forms.
Written for high school and college mathematics teachers and their students, as well as a general audience, this book discusses concepts such as positive integers, rational numbers, real numbers, complex numbers, polynomials, algebra, two- and three-dimensional geometry and topology.
This book contains 11 chapters from various experts all over the world on mathematics education. It provides different perspective of how to establish connection within mathematics and beyond. The ideas are from different authors internationally and is practice-oriented, based on empirical studies conducted by the various authors. This is a good illustration of linking theory with practice.
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.