Elementary Introduction to New Generalized Functions

Elementary Introduction to New Generalized Functions

Author: J.F. Colombeau

Publisher: Elsevier

Published: 2011-08-18

Total Pages: 297

ISBN-13: 0080872247

DOWNLOAD EBOOK

The author's previous book `New Generalized Functions and Multiplication of Distributions' (North-Holland, 1984) introduced `new generalized functions' in order to explain heuristic computations of Physics and to give a meaning to any finite product of distributions. The aim here is to present these functions in a more direct and elementary way. In Part I, the reader is assumed to be familiar only with the concepts of open and compact subsets of R&eegr;, of C∞ functions of several real variables and with some rudiments of integration theory. Part II defines tempered generalized functions, i.e. generalized functions which are, in some sense, increasing at infinity no faster than a polynomial (as well as all their partial derivatives). Part III shows that, in this setting, the partial differential equations have new solutions. The results obtained show that this setting is perfectly adapted to the study of nonlinear partial differential equations, and indicate some new perspectives in this field.


Nonlinear Theory of Generalized Functions

Nonlinear Theory of Generalized Functions

Author: Michael Oberguggenberger

Publisher: Routledge

Published: 2022-02-28

Total Pages: 400

ISBN-13: 1351428039

DOWNLOAD EBOOK

Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.


Generalized Functions and Their Applications

Generalized Functions and Their Applications

Author: R.S. Pathak

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 298

ISBN-13: 1489915915

DOWNLOAD EBOOK

The International Symposium on Generalized Functions and Their Applications was organized by the Department of Mathematics, Banaras Hindu University, and held December 23-26, 1991, on the occasion of the Platinum Jubilee Celebration of the university. More than a hundred mathematicians from ten countries participated in the deliberations of the symposium. Thirty lectures were delivered on a variety of topics within the area. The contributions to the proceedings of the symposium are, with a few exceptions, expanded versions of the lectures delivered by the invited speakers. The survey papers by Komatsu and Hoskins and Sousa Pinto provide an up-to-date account of the theory of hyperfunctions, ultradistributions and microfunctions, and the nonstandard theory of new generalized functions, respectively; those by Stankovic and Kanwal deal with structures and asymptotics. Choquet-Bruhat's work studies generalized functions on manifold and gives applications to shocks and discrete models. The other contributions relate to contemporary problems and achievements in theory and applications, especially in the theory of partial differential equations, differential geometry, mechanics, mathematical physics, and systems science. The proceedings give a very clear impression of the present state of the art in this field and contain many challenges, ideas, and open problems. The volume is very helpful for a broad spectrum of readers: graduate students to mathematical researchers.


Pseudo-Differential Operators and Generalized Functions

Pseudo-Differential Operators and Generalized Functions

Author: Stevan Pilipović

Publisher: Birkhäuser

Published: 2015-04-27

Total Pages: 288

ISBN-13: 3319146181

DOWNLOAD EBOOK

This book gathers peer-reviewed contributions representing modern trends in the theory of generalized functions and pseudo-differential operators. It is dedicated to Professor Michael Oberguggenberger (Innsbruck University, Austria) in honour of his 60th birthday. The topics covered were suggested by the ISAAC Group in Generalized Functions (GF) and the ISAAC Group in Pseudo-Differential Operators (IGPDO), which met at the 9th ISAAC congress in Krakow, Poland in August 2013. Topics include Columbeau algebras, ultra-distributions, partial differential equations, micro-local analysis, harmonic analysis, global analysis, geometry, quantization, mathematical physics, and time-frequency analysis. Featuring both essays and research articles, the book will be of great interest to graduate students and researchers working in analysis, PDE and mathematical physics, while also offering a valuable complement to the volumes on this topic previously published in the OT series.


A Nonlinear Theory of Generalized Functions

A Nonlinear Theory of Generalized Functions

Author: Hebe de Azevedo Biagioni

Publisher: Springer

Published: 2006-11-14

Total Pages: 226

ISBN-13: 3540469818

DOWNLOAD EBOOK

This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applications are not dissociated it may also be useful for physicists and engineers. The needed prerequisites for its reading are essentially reduced to the classical notions of differential calculus and the theory of integration over n-dimensional euclidean spaces.


Generalized Functions, Convergence Structures, and Their Applications

Generalized Functions, Convergence Structures, and Their Applications

Author: Bogoljub Stankovic

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 432

ISBN-13: 1461310555

DOWNLOAD EBOOK

This Proceedings consists of a collection of papers presented at the International Conference "Generalized functions, convergence structures and their applications" held from June 23-27, 1987 in Dubrovnik, Yugoslavia (GFCA-87): 71 participants from 21 countr~es from allover the world took part in the Conference. Proceedings reflects the work of the Conference. Plenary lectures of J. Burzyk, J. F. Colombeau, W. Gahler, H. Keiter, H. Komatsu, B. Stankovic, H. G. Tillman, V. S. Vladimirov provide an up-to-date account of the cur rent state of the subject. All these lectures, except H. G. Tillman's, are published in this volume. The published communications give the contemporary problems and achievements in the theory of generalized functions, in the theory of convergence structures and in their applications, specially in the theory of partial differential equations and in the mathematical physics. New approaches to the theory of generalized functions are presented, moti vated by concrete problems of applications. The presence of articles of experts in mathematical physics contributed to this aim. At the end of the volume one can find presented open problems which also point to further course of development in the theory of generalized functions and convergence structures. We are very grateful to Mr. Milan Manojlovic who typed these Proce edings with extreme skill and diligence and with inexhaustible patience.


On the Foundations of Nonlinear Generalized Functions I and II

On the Foundations of Nonlinear Generalized Functions I and II

Author: Michael Grosser

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 113

ISBN-13: 0821827294

DOWNLOAD EBOOK

In part 1 of this title the authors construct a diffeomorphism invariant (Colombeau-type) differential algebra canonically containing the space of distributions in the sense of L. Schwartz. Employing differential calculus in infinite dimensional (convenient) vector spaces, previous attempts in this direction are unified and completed. Several classification results are achieved and applications to nonlinear differential equations involving singularities are given.


Geometric Theory of Generalized Functions with Applications to General Relativity

Geometric Theory of Generalized Functions with Applications to General Relativity

Author: M. Grosser

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 517

ISBN-13: 9401598452

DOWNLOAD EBOOK

Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.


Generalized Functions And Convergence: Memorial Volume For Professor Jan Mikusinski

Generalized Functions And Convergence: Memorial Volume For Professor Jan Mikusinski

Author: Piotr Antosik

Publisher: World Scientific

Published: 1990-09-12

Total Pages: 398

ISBN-13: 9814611719

DOWNLOAD EBOOK

The conference was devoted to the memory of the late Professor Jan Mikusinski. The proceedings is divided into three parts. The first one contains biographical materials and memoirs about Professor Mikusinski and his work. The second part is devoted to the theory of generalized functions and the third to convergence structures.