After an introduction to relativistic quantum mechanics, which lays the foundation for the rest of the text, the author moves on to the phenomenology and physics of fundamental interactions via a detailed discussion of the empirical principles of unified theories of strong, electromagnetic, and weak interactions. There then follows a development of local gauge theories and the minimal standard model of the fundamental interactions together with their characteristic applications. The book concludes with further possibilities and the theory of interactions for elementary particles probing complex nuclei. Numerous exercises with solutions make this an ideal text for graduate courses on quantum mechanics and elementary particle physics.
This textbook gives a comprehensive summary of the gauge theories of the fundamental interactions. The authors stress the intimate connection between the basic experimental facts and the formulation of gauge theories of the strong and electroweak interaction. The concepts and technical tools of quantum field theory are presented. They are used to derive precision results of quantum chromodynamics and the standard model of the electroweak interaction of experiments in elementary particle physics. The book includes the latest experimental results and presents the actual status of the theory.
This book offers construction of a renormalizable effective theory of electroweak-interacting spin-1 dark matter (DM). The effective theory realizes minimal but essential features of DM predicted in extra-dimension models, and enables to systematically treat non-perturbative corrections such as the Sommerfeld effects. Deriving an annihilation cross section including the Sommerfeld effects based on the effective theory, the author discusses the future sensitivity of observations to gamma-ray from the Galactic Center. As a result, the author explains the monochromatic gamma-ray signatures originate from two photons (γγ) or photon and Z boson (γZ) produced in the process of DM annihilations, and concludes a possible scenario that unstable neutral spin-1 particles (Z’) appear and results in a spectral peak in addition to the one caused by γγ and γZ channels in gamma-ray observations. If those two spectral peaks are observed, the masses of spin-1 DM and Z’ would be reconstructed.
This books aims at giving an overview over theoretical and phenomenological aspects of particle astrophysics and particle cosmology. To be of interest for both students and researchers in neighboring fields of physics, it keeps a balance between well established foundations that will not significantly change in the future and a more in-depth treatment of selected subfields in which significant new developments have been taking place recently. These include high energy particle astrophysics, such as cosmic high energy neutrinos, the interplay between detection techniques of dark matter in the laboratory and in high energy cosmic radiation, axion-like particles, and relics of the early Universe such as primordial magnetic fields and gravitational waves. It also contains exercises and thus will be suitable for both introductory and advanced courses in astroparticle physics.
This book is based on the lecture course taught by the author for about three decades at Charles University. The author gives a thorough and easy-to-read account of the basic principles of the standard model of electroweak interactions, describes various theories of electromagnetic and weak interactions, and explains the gauge theory of electroweak interactions. The criterion of the tree-level unitarity is used throughout the text to check the gradual steps leading to the renormalizable electroweak theory. Five appendices expound on some special techniques of the Standard Model, used in the main body of the text.The book can be read with just a preliminary knowledge of quantum field theory. In comparison with the first edition of the book published more than 20 years ago, new passages concerning the Higgs boson are added, as well as some new problems and solutions.
Supersymmetry or SUSY, one of the most beautiful recent ideas of physics, predicts sparticles existing as superpartners of particles. This book gives a theoretical and phenomenological account of sparticles. Starting from a basic level, it provides a comprehensive, pedagogical and user-friendly treatment of the subject of four-dimensional N=1 supersymmetry as well as its observational aspects in high energy physics and cosmology. Part One of the book introduces the requisite formal theory, preceded by a discussion of the naturalness problem. Part Two describes the supersymmetrization of the Standard Model of particle interactions as well as the origin of soft supersymmetry breaking and how it can be mediated from higher energies. Search strategies for sparticles, supersymmetric Higgs bosons, nonminimal scenarios and cosmological implications are some of the other topics covered. Novel features of the book include a dictionary between two-component and four-component spinor notation, a step-by-step derivation of the nonrenormalization theorem, an extended discussion of supersymmetric renormalization group evolution, detailed analyses of minimal and nonminimal models with gravity (including anomaly) mediated and gauge mediated supersymmetry breaking as well as elaborate self-contained presentations of collider signals of sparticles plus supersymmetric Higgs bosons and of supersymmetric cosmology. Appendices list all Feynman rules for the vertices of the Minimal Supersymmetric Standard Model.
Introduction to the Physics of Electroweak Interactions is a six-chapter book that first elucidates the deep-inelastic and elastic lepton scattering on nucleons (both cases of polarized and nonpolarized initial particles). Subsequent chapter presents a brief history of the construction of the phenomenological V-A weak interaction Hamiltonian. Other chapters detail the Glashow-Weinberg-Salam unified theory of weak and electromagnetic interactions; the processes in which neutrinos take part; and processes due to neutral currents, deep-inelastic neutrino-nucleon scattering, elastic neutrino-nucleon scattering, and elastic neutrino-electron scattering. This book will be useful to those who wish to master the techniques for calculating the experimentally measured quantities.
A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies
Get First-Hand Insight from a Contributor to the Standard Model of Particle PhysicsWritten by an award-winning former director-general of CERN and one of the world's leading experts on particle physics, Electroweak Interactions explores the concepts that led to unification of the weak and electromagnetic interactions. It provides the fundamental el