Low-Dimensional Semiconductor Structures

Low-Dimensional Semiconductor Structures

Author: Keith Barnham

Publisher: Cambridge University Press

Published: 2008-12-11

Total Pages: 408

ISBN-13: 9780521599047

DOWNLOAD EBOOK

Low-Dimensional Semiconductor Structures offers a seamless, atoms-to-devices introduction to the latest quantum heterostructures. It covers their fabrication; electronic, optical, and transport properties; role in exploring new physical phenomena; and utilization in devices. The authors describe the epitaxial growth of semiconductors and the physical behavior of electrons and phonons in low-dimensional structures. They then go on to discuss nonlinear optics in quantum heterostructures. The final chapters deal with semiconductor lasers, mesoscopic devices, and high-speed heterostructure devices. The book contains many exercises and comprehensive references.


Physics of Low-Dimensional Semiconductor Structures

Physics of Low-Dimensional Semiconductor Structures

Author: Paul N. Butcher

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 597

ISBN-13: 1489924159

DOWNLOAD EBOOK

Presenting the latest advances in artificial structures, this volume discusses in-depth the structure and electron transport mechanisms of quantum wells, superlattices, quantum wires, and quantum dots. It will serve as an invaluable reference and review for researchers and graduate students in solid-state physics, materials science, and electrical and electronic engineering.


Electrons and Phonons in Semiconductor Multilayers

Electrons and Phonons in Semiconductor Multilayers

Author: B. K. Ridley

Publisher: Cambridge University Press

Published: 2009-04-30

Total Pages: 411

ISBN-13: 1139477552

DOWNLOAD EBOOK

Advances in nanotechnology have generated semiconductor structures that are only a few molecular layers thick, and this has important consequences for the physics of electrons and phonons in such structures. This book describes in detail how confinement of electrons and phonons in quantum wells and wires affects the physical properties of the semiconductor. This second edition contains four new chapters on spin relaxation, based on recent theoretical research; the hexagonal wurtzite lattice; nitride structures, whose novel properties stem from their spontaneous electric polarization; and terahertz sources, which includes an account of the controversies that surrounded the concepts of Bloch oscillations and Wannier-Stark states. The book is unique in describing the microscopic theory of optical phonons, the radical change in their nature due to confinement, and how they interact with electrons. It will interest graduate students and researchers working in semiconductor physics.


The Physics of Low-dimensional Semiconductors

The Physics of Low-dimensional Semiconductors

Author: John H. Davies

Publisher: Cambridge University Press

Published: 1998

Total Pages: 460

ISBN-13: 9780521484916

DOWNLOAD EBOOK

The composition of modern semiconductor heterostructures can be controlled precisely on the atomic scale to create low-dimensional systems. These systems have revolutionised semiconductor physics, and their impact on technology, particularly for semiconductor lasers and ultrafast transistors, is widespread and burgeoning. This book provides an introduction to the general principles that underlie low-dimensional semiconductors. As far as possible, simple physical explanations are used, with reference to examples from actual devices. The author shows how, beginning with fundamental results from quantum mechanics and solid-state physics, a formalism can be developed that describes the properties of low-dimensional semiconductor systems. Among numerous examples, two key systems are studied in detail: the two-dimensional electron gas, employed in field-effect transistors, and the quantum well, whose optical properties find application in lasers and other opto-electronic devices. The book includes many exercises and will be invaluable to undergraduate and first-year graduate physics or electrical engineering students taking courses in low-dimensional systems or heterostructure device physics.


Electron-phonon Interactions in Low-dimensional Structures

Electron-phonon Interactions in Low-dimensional Structures

Author: Lawrence John Challis

Publisher:

Published: 2003

Total Pages: 302

ISBN-13: 9780198507321

DOWNLOAD EBOOK

The study of electrons and holes confined to two, one and even zero dimensions has uncovered a rich variety of new physics and applications. This book describes the interaction between these confined carriers and the optic and acoustic phonons within and around the confined regions. Phonons provide the principal channel of energy transfer between the carriers and their surroundings and also the main restriction to their room temperature mobility. But they have many other roles; they provide, for example, an essential feature of the operation of the quantum cascade laser. Since their momenta at relevant energies are well matched to those of electrons, they can also be used to probe electronic properties such as the confinement width of 2D electron gases and the dispersion curve of quasiparticles in the fractional quantum Hall effect. The book describes both the physics of the electron-phonon interaction in the different confined systems and the experimental and theoretical techniques that have been used in its investigation. The experimental methods include optical and transport techniques as well as techniques in which phonons are used as the experimental probe. The aim of the book is to provide an up to date review of the physics and its significance in device performance. It is also written to be explanatory and accessible to graduate students and others new to the field.


Theoretical Modelling Of Semiconductor Surfaces

Theoretical Modelling Of Semiconductor Surfaces

Author: G P Srivastava

Publisher: World Scientific

Published: 1999-11-22

Total Pages: 346

ISBN-13: 9814496758

DOWNLOAD EBOOK

The state-of-the-art theoretical studies of ground state properties, electronic states and atomic vibrations for bulk semiconductors and their surfaces by the application of the pseudopotential method are discussed. Studies of bulk and surface phonon modes have been extended by the application of the phenomenological bond charge model. The coverage of the material, especially of the rapidly growing and technologically important topics of surface reconstruction and chemisorption, is up-to-date and beyond what is currently available in book form. Although theoretical in nature, the book provides a good deal of discussion of available experimental results. Each chapter provides an adequate list of references, relevant for both theoretical and experimental studies. The presentation is coherent and self-contained, and is aimed at the postgraduate and postdoctoral levels.


Phonons in Semiconductor Nanostructures

Phonons in Semiconductor Nanostructures

Author: J.P. Leburton

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 490

ISBN-13: 9401116830

DOWNLOAD EBOOK

In the last ten years, the physics and technology of low dimensional structures has experienced a tremendous development. Quantum structures with vertical and lateral confinements are now routinely fabricated with feature sizes below 100 run. While quantization of the electron states in mesoscopic systems has been the subject of intense investigation, the effect of confinement on lattice vibrations and its influence on the electron-phonon interaction and energy dissipation in nanostructures received atten tion only recently. This NATO Advanced Research Workshop on Phonons in Sem iconductor Nanostructures was a forum for discussion on the latest developments in the physics of phonons and their impact on the electronic properties of low-dimensional structures. Our goal was to bring together specialists in lattice dynamics and nanos tructure physics to assess the increasing importance of phonon effects on the physical properties of one-(lD) and zero-dimensional (OD) structures. The Workshop addressed various issues related to phonon physics in III-V, II-VI and IV semiconductor nanostructures. The following topics were successively covered: Models for confined phonons in semiconductor nanostructures, latest experimental observations of confined phonons and electron-phonon interaction in two-dimensional systems, elementary excitations in nanostructures, phonons and optical processes in reduced dimensionality systems, phonon limited transport phenomena, hot electron effects in quasi - ID structures, carrier relaxation and phonon bottleneck in quantum dots.


Phonons in Nanostructures

Phonons in Nanostructures

Author: Michael A. Stroscio

Publisher: Cambridge University Press

Published: 2001-08-23

Total Pages: 290

ISBN-13: 1139430327

DOWNLOAD EBOOK

This book focuses on the theory of phonon interactions in nanoscale structures with particular emphasis on modern electronic and optoelectronic devices. The continuing progress in the fabrication of semiconductor nanostructures with lower dimensional features has led to devices with enhanced functionality and even novel devices with new operating principles. The critical role of phonon effects in such semiconductor devices is well known. There is therefore a great need for a greater awareness and understanding of confined phonon effects. A key goal of this book is to describe tractable models of confined phonons and how these are applied to calculations of basic properties and phenomena of semiconductor heterostructures. The level of presentation is appropriate for undergraduate and graduate students in physics and engineering with some background in quantum mechanics and solid state physics or devices. A basic understanding of electromagnetism and classical acoustics is assumed.


Hot Electrons in Semiconductors

Hot Electrons in Semiconductors

Author: N. Balkan

Publisher:

Published: 1998

Total Pages: 536

ISBN-13: 9780198500582

DOWNLOAD EBOOK

Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further development. This book is the only comprehensive and up-to-date coverage of hot electrons. Intended for both established researchers and graduate students, it gives a complete account of the historical development of the subject, together with current research and future trends, and covers the physics of hot electrons in bulk and low-dimensional device technology. The contributions are from leading scientists in the field and are grouped broadly into five categories: introduction and overview; hot electron-phonon interactions and ultra-fast phenomena in bulk and two-dimensional structures; hot electrons in quantum wires and dots; hot electron tunneling and transport in superlattices; and novel devices based on hot electron transport.


Introduction to Isotopic Materials Science

Introduction to Isotopic Materials Science

Author: Vladimir G. Plekhanov

Publisher: Springer

Published: 2018-12-05

Total Pages: 298

ISBN-13: 3319422618

DOWNLOAD EBOOK

This book describes new trends in the nanoscience of isotopic materials science. Assuming a background in graduate condensed matter physics and covering the fundamental aspects of isotopic materials science from the very beginning, it equips readers to engage in high-level professional research in this area. The book ́s main objective is to provide insight into the question of why solids are the way they are, either because of how their atoms are bonded with one another, because of defects in their structure, or because of how they are produced or processed. Accordingly, it explores the science of how atoms interact, connects the results to real materials properties, and demonstrates the engineering concepts that can be used to produce or improve semiconductors by design. In addition, it shows how the concepts discussed are applied in the laboratory. The book addresses the needs of researchers, graduate students and senior undergraduate students alike. Although primarily written for materials science audience, it will be equally useful to those teaching in electrical engineering, materials science or even chemical engineering or physics curricula. In order to maintain the focus on materials concepts, however, the book does not burden the reader with details of many of the derivations and equations nor does it delve into the details of electrical engineering topics.