This 2003 book relates the strength characteristics of constituent atoms to the electronic structures. It begins with short reviews of classical and quantum mechanics followed by reviews of the three major branches of the strength of materials: elastic stiffnesses; plastic responses; and the nature of fracture.
Iterative comparison of analytical results and natural observations with predictions of numerical models improves interpretation of geological processes. Further refinements derive from wide-angle comparison of results from various scales of study. In this volume, advances from field, laboratory and modelling approaches to tectonic evolution - from the lithosphere to the rock scale - are compared. Constructive use is made of apparently discrepant or non-consistent results from analytical or methodological approaches in processing field or laboratory data, P-T estimates, absolute or relative age determinations of tectonic events, tectonic unit size in crustal-scale deformation, grain-scale deformation processes, various modelling approaches, and numerical techniques. Advances in geodynamic modelling critically depend on new insights into grain- and subgrain-scale deformation processes. Conversely, quantitative models help to identify which rheological laws and pa-rameters exert the strongest control on multi-scale deformation up to lithosphere and upper mantle scale
Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.
This book gives a broad introduction to the properties of materials used in engineering applications, and is intended to provide a course in engineering materials for students with no previous background in the subject.
In addition to coverage of customary elementary subjects (tension, torsion, bending, etc.), this introductory text features advanced material on engineering methods and applications, plus 350 problems and answers. 1949 edition.
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.