Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics

Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics

Author: Andrej Szytula

Publisher: CRC Press

Published: 2020-07-09

Total Pages: 289

ISBN-13: 0429612834

DOWNLOAD EBOOK

Rare-earth intermetallics, also known as lanthanide elements, play an important role in the study of magnetic materials and the development of semi- and super-conducting materials. This handbook provides an up-to-date compilation of crystallographic, physical, and magnetic data on rare-earth intermetallic compounds. Over 20 different structure types are described in detail with an emphasis on how crystal structure can affect magnetic properties. Theoretical models for magnetic interactions are described as well as the impact of crystal electric fields on transport properties, magneto crystalline anistropy and hyperfine interactions. This book provides materials scientists, engineers and physicists with all the critical information needed to use rare-earth intermetallics effectively in the development of new materials.


Handbook of Magnetic Materials

Handbook of Magnetic Materials

Author: Ekkes H. Brück

Publisher: Elsevier

Published: 2020-11-29

Total Pages: 216

ISBN-13: 0128210249

DOWNLOAD EBOOK

Handbook of Magnetic Materials, Volume 29, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors on topics such as spin-orbit torque. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Magnetic Materials series


Study of New Ternary Rare-Earth Intermetallic Germanides with Polar Covalent Bonding

Study of New Ternary Rare-Earth Intermetallic Germanides with Polar Covalent Bonding

Author: Riccardo Freccero

Publisher: Springer Nature

Published: 2020-11-16

Total Pages: 221

ISBN-13: 3030589927

DOWNLOAD EBOOK

The thesis focuses on the syntheses, structural characterizations and chemical bonding analyses for several ternary R–M–Ge (R = rare earth metal; M = another metal) intermetallics. The challenges in understanding the main interactions governing the chemistry of these compounds, which lead to our inability to predict their formation, structure and properties, are what provided the motivation for this study. In particular, the R2MGe6 (M = Li, Mg, Al, Cu, Zn, Pd, Ag), R4MGe10-x (M = Li, Mg), R2Pd3Ge5, Lu5Pd4Ge8, Lu3Pd4Ge4 and Yb2PdGe3 phases were synthesized and structurally characterized. Much effort was put into the stabilization of metastable phases, employing the innovative metal flux method, and into the accurate structure solution of twinned crystals. Cutting-edge position-space chemical bonding techniques were combined with new methodologies conceived to correctly describe the Ge–M, Ge–La and also La–M polar-covalent interactions for the La2MGe6 (M = Li, Mg, Al, Cu, Zn, Pd, Ag) series. The present results constitute a step forward in our comprehension of ternary germanide chemistry as well as providing a good playground for further investigations.


Bibliography

Bibliography

Author: Pierre Villars

Publisher: Walter de Gruyter

Published: 2012-12-21

Total Pages: 1827

ISBN-13: 3110276658

DOWNLOAD EBOOK

By browsing about 10 000 000 scientific articles of over 200 major journals mainly in a 'cover to cover approach' some 200 000 publications were selected. The extracted data is part of the following fundamental material research fields: crystal structures (S), phase diagrams (also called constitution) (C) and the comprehensive field of intrinsic physical properties (P). This work has been done systematically starting with the literature going back to 1900. The above mentioned research field codes (S, C, P) as well as the chemical systems investigated in each publication were included in the present work. The aim of the Inorganic Substances Bibliography is to provide researchers with a comprehensive compilation of all up to now published scientific publications on inorganic systems in only three handy volumes.


Handbook on the Physics and Chemistry of Rare Earths

Handbook on the Physics and Chemistry of Rare Earths

Author:

Publisher: Elsevier

Published: 2014-07-10

Total Pages: 373

ISBN-13: 0444633308

DOWNLOAD EBOOK

The Handbook on the Physics and Chemistry of Rare Earths is an ongoing series covering all aspects of rare earth science—chemistry, life sciences, materials science, and physics. The main emphasis of the Handbook is on rare earth elements [Sc, Y and the lanthanides (La through Lu)] but information is also included, whenever relevant, on the closely related actinide elements. The individual chapters are comprehensive, broad, up-to-date critical reviews written by highly experienced invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements and now publishes two volumes a year. - Individual chapters are comprehensive, broad, critical reviews - Contributions are written by highly experienced, invited experts - Up-to-date overviews of developments in the field


Handbook on the Physics and Chemistry of Rare Earths

Handbook on the Physics and Chemistry of Rare Earths

Author: J.-C. G. Bünzli

Publisher: Elsevier

Published: 2011-11-25

Total Pages: 547

ISBN-13: 0444543171

DOWNLOAD EBOOK

This continuing authoritative series deals with the chemistry, materials science, physics and technology of the rare earth elements in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The work offers the researcher and graduate student a complete and thorough coverage of this fascinating field. - Authoritative - Comprehensive - Up-to-date - Critical


Handbook on the Physics and Chemistry of Rare Earths

Handbook on the Physics and Chemistry of Rare Earths

Author: K.A. Gschneidner

Publisher: Elsevier

Published: 2000-12-15

Total Pages: 656

ISBN-13: 0080544371

DOWNLOAD EBOOK

This volume of the Handbook is the first of a two-volume set of reviews devoted to the rare-earth-based high-temperature oxide superconductors (commonly known as hiTC superconductors). The history of hiTC superconductors is a few months short of being 14 years old when Bednorz and Müller published their results which showed that (La,BA)2CuO4 had a superconducting transition of ~30 K, which was about 7K higher than any other known superconducting material. Within a year the upper temperature limit was raised to nearly 100K with the discovery of an ~90K superconducting transition in YBa2Cu3O7-&dgr;. The announcement of a superconductor with a transition temperature higher than the boiling point of liquid nitrogen set-off a frenzy of research on trying to find other oxide hiTC superconductors. Within a few months the maximum superconducting transition reached 110 K (Bi2Sr2Ca2Cu3010, and then 122K (TlBa2Ca3Cu4O11. It took several years to push TC up another 11 K to 133 K with the discovery of superconductivity in HgBa2Ca2Cu3O8, which is still the record holder today.