Introduction to the Theory of Collisions of Electrons with Atoms and Molecules

Introduction to the Theory of Collisions of Electrons with Atoms and Molecules

Author: S.P. Khare

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 362

ISBN-13: 1461506115

DOWNLOAD EBOOK

An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.


Fundamental Electron Interactions with Plasma Processing Gases

Fundamental Electron Interactions with Plasma Processing Gases

Author: Loucas G. Christophorou

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 791

ISBN-13: 1441989714

DOWNLOAD EBOOK

This volume deals with the basic knowledge and understanding of fundamental interactions of low energy electrons with molecules. It pro vides an up-to-date and comprehensive account of the fundamental in teractions of low-energy electrons with molecules of current interest in modern technology, especially the semiconductor industry. The primary electron-molecule interaction processes of elastic and in elastic electron scattering, electron-impact ionization, electron-impact dissociation, and electron attachment are discussed, and state-of-the art authoritative data on the cross sections of these processes as well as on rate and transport coefficients are provided. This fundamental knowledge has been obtained by us over the last eight years through a critical review and comprehensive assessment of "all" available data on low-energy electron collisions with plasma processing gases which we conducted at the National Institute of Standards and Technology (NIST). Data from this work were originally published in the Journal of Physical and Chemical Reference Data, and have been updated and expanded here. The fundamental electron-molecule interaction processes are discussed in Chapter 1. The cross sections and rate coefficients most often used to describe these interactions are defined in Chapter 2, where some recent advances in the methods employed for their measurement or calculation are outlined. The methodology we adopted for the critical evaluation, synthesis, and assessment of the existing data is described in Chapter 3. The critically assessed data and recommended or suggested cross sections and rate and transport coefficients for ten plasma etching gases are presented and discussed in Chapters 4, 5, and 6.


Electron-Molecule Collisions

Electron-Molecule Collisions

Author: Isao Shimamura

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 578

ISBN-13: 1461323576

DOWNLOAD EBOOK

Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiation physics, the physics of gas discharges, magnetohydrodynamic power generation, and so on. This book aims at introducing the reader to the problem of electron molecule collisions, elucidating the physics behind the phenomena, and review ing, to some extent, up-to-date important results. This book should be appropri ate for graduate reading in physics and chemistry. We also believe that investi gators in atomic and molecular physics will benefit much from this book.


Atomic Particles and Atom Systems

Atomic Particles and Atom Systems

Author: Boris M. Smirnov

Publisher: Springer

Published: 2018-07-10

Total Pages: 219

ISBN-13: 331975405X

DOWNLOAD EBOOK

This book presents physical units and widely used physical formulas, which are given together with conversion factors in various units. It includes frequently used atomic spectra and data for atoms, ions and molecules, as well as potential curves for diatomic molecules, and provides numerical parameters for transport phenomena in gases and plasmas. Further, the rate constants of a number of processes in atmospheric ionized air have been added to this second edition of the book. The numerical data has been selected from the information on atoms, atomic systems, atomic processes and models for atomic physics in this area, and the numerical parameters of atoms, ions and atom systems are included in periodical tables of elements.


Introduction to Atomic and Molecular Collisions

Introduction to Atomic and Molecular Collisions

Author: R. E. Johnson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 294

ISBN-13: 1468484486

DOWNLOAD EBOOK

In working with graduate students in engineering physics at the University of Virginia on research problems in gas kinetics, radiation biology, ion materials interactions, and upper-atmosphere chemistry, it became quite apparent that there was no satisfactory text available to these students on atomic and molecular collisions. For graduate students in physics and quantum chemistry and researchers in atomic and molecular interactions there are a large number of excellent advanced texts. However, for students in applied science, who require some knowledge and understanding of col lision phenomena, such texts are of little use. These students often have some background in modern physics and/or chemistry but lack graduate level course work in quantum mechanics. Such students, however, tend to have a good intuitive grasp of classical mechanics and have been exposed to wave phenomena in some form (e. g. , electricity and magnetism, acoustics, etc. ). Further, their requirements in using collision processes and employing models do not generally include the use of formal scattering theory, a large fraction of the content of many advanced texts. In fact, most researchers who work in the area of atomic and molecular collisions tend to pride themselves on their ability to describe results using simple theoretical models based on classical and semiclassical methods.


Swarms of Ions and Electrons in Gases

Swarms of Ions and Electrons in Gases

Author: W. Lindinger

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 319

ISBN-13: 3709187737

DOWNLOAD EBOOK

Our understanding of elementary processes in plasmas has been increasing dramatically over the last few years. The development of various swarm techniques, such as the temperature variable selected ion flow tube or the selected ion flow drift tube, has provided the prerequisite for detailed investigations into ion molecule reactions both in binary and three body collisions, and the mechanisms of many reactions are now understood quite satisfactorily. This information could not have been obtained without a detailed knowledge of the transport phenomena involved. Some of these, such as the internal-energy distribution of drifting ions, have only very recently been tackled both theoretically and experimentally; a consistent model is now being developed. As the interactions between the various branches of swarm research have become more and more intense, the most obvious thing to do was putting together a review on the present state of this subject, which is the aim of this book.


Special Topics

Special Topics

Author: H. S. W. Massey

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 464

ISBN-13: 148328171X

DOWNLOAD EBOOK

Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy physics experiments; photoelectron spectroscopy of negative ions and the chemical information that can be obtained from such studies; and the determination of intermolecular potentials. Also discussed are studies on the determination of ion molecular potential curves using photodissociative processes; determination of negative ion thermo chemical data using ion-neutral reactions; gas-phase chemical reactions; collision phenomena in electrical discharge lamps; and military applications of atomic and molecular physics.


Positron (Electron): Gas Scattering - Proceedings Of The 3rd International Workshop

Positron (Electron): Gas Scattering - Proceedings Of The 3rd International Workshop

Author: Walter E Kauppila

Publisher: World Scientific

Published: 1986-04-01

Total Pages: 373

ISBN-13: 9813201851

DOWNLOAD EBOOK

This workshop discusses the current state and future directions of research in positron — gas scattering, particularly in the relationship between positron and electron scattering by the same atoms and molecules. The possible applications of positron — gas scattering to astrophysical phenomena have also been discussed.