University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
This comprehensive primer by a Nobel Physicist covers the electronic spectra of metals, electrical and thermal conductivities, galvanomagnetic and thermoelectrical phenomena, the behavior of metals in high-frequency fields, sound absorption, and Fermi-liquid phenomena. Addressing in detail all aspects of the energy spectra of electrons in metals and the theory of superconductivity, it continues to be a valuable resource for the field almost thirty years after its initial publication. Targeted at undergraduate students majoring in physics as well as graduate and postgraduate students, research workers, and teachers, this is an essential reference on the topic of electromagnetism and superconductivity in metals. No special knowledge of metals beyond a course in general physics is needed, although the author does presume a knowledge of quantum mechanics and quantum statistics.
An Introduction to the Electron Theory of Solids introduces the reader to the electron theory of solids. Topics covered range from the breakdown of classical theory to atomic spectra and the old quantum theory, as well as the uncertainty principle of Heisenberg and the foundations of quantum mechanics. Some problems in wave mechanics and a wave-mechanical treatment of the simple harmonic oscillator and the hydrogen atom are also presented. Comprised of 12 chapters, this book begins with an introduction to Isaac Newton's theory of classical mechanics and how the scientists after him discounted his ideas. The discussion then turns to the spectrum of atomic hydrogen and the old quantum theory; Heisenberg's uncertainty principle and the consequences of wave-particle duality; the foundations of quantum mechanics; and assemblies of atoms. Atoms in motion and statistical mechanics are also considered, along with simple models of metals and the band theory of solids. The final chapter presents some results of band theory, with particular reference to thermal ionization of impurity atoms and conductivity of metals. This monograph is primarily intended for students of any discipline.
Bonding Theory for Metals and Alloys, 2e builds on the success of the first edition by introducing new experimental data to each chapter that support the breakthrough "Covalon" Conduction Theory developed by Dr. Wang. Through the recognition of the covalent bond in coexistence with the 'free' electron band, the book describes and demonstrates how the many experimental observations on metals and alloys can all be reconciled. Subsequently, it shows how the individual view of metals and alloys by physicists, chemists and metallurgists can be unified. This book covers such phenomena as the Miscibility Gap between two liquid metals, phase equilibrium, superconductivity, superplasticity, liquid metal embrittlement, and corrosion. The author also introduces a new theory based on 'Covalon' conduction, which forms the basis for a new approach to the theory of superconductivity. Bonding Theory for Metals and Alloys, 2e is of interest to physical and theoretical chemists alongside engineers working in research and industry, as well as materials scientists, physicists, and students at the upper undergraduate and graduate level in these fields. - All chapters completed revised to reflect developments in research since 2005 - New experimental data added to each chapter - Broadens experimental data to support the author's "Covalon" conduction theory, which carries current in covalent bonded pairs - Total of approximately 30% - 35% new and revised content
This is a first undergraduate textbook in Solid State Physics or Condensed Matter Physics. While most textbooks on the subject are extremely dry, this book is written to be much more exciting, inspiring, and entertaining.
Solid-state physics has for many years been one of the largest and most active areas of research in physics, and the physics of metals and semiconductors has in turn been one of the largest and most active areas in solid-state physics. Despite this, it is an area in which new and quite unexpected phenomena - such as the quantum Hall effect - are still being discovered, and in which many things are not yet fully understood. It forms an essential part of any undergraduate physics course. A number of textbooks on solid-state physics have appeared over the years and, because the subject has now grown so large, the books too have usually been large. By aiming at a more limited range of topics, I have tried in this book to cover them within a reasonably small compass. But I have also tried to avoid the phrase 'It can be shown that. . . ', as far as possible, and instead to explain to the reader just why things are the way they are; and sometimes this takes a little longer. I hope that some readers at least will find this approach helpful. 1 The free-electron model 1. 1 THE CLASSICAL DRUDE THEORY The characteristic properties of metals and semiconductors are due to their conduction electrons: the electrons in the outermost atomic shells, which in the solid state are no longer bound to individual atoms, but are free to wander through the solid.
Since the discovery of high Tc superconductivity, the role of electron correlation on superconductivity has been an important issue in condensed matter physics. Here the role of electron correlation in metals is explained in detail on the basis of the Fermi liquid theory. The book, originally published in 2004, discusses the following issues: enhancements of electronic specific heat and magnetic susceptibility, effects of electron correlation on transport phenomena such as electric resistivity and Hall coefficient, magnetism, Mott transition and unconventional superconductivity. These originate commonly from the Coulomb repulsion between electrons. In particular, superconductivity in strongly correlated electron systems is discussed with a unified point of view. This book is written to explain interesting physics in metals for undergraduate and graduate students and researchers in condensed matter physics.
Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine structure spectroscopy and photoemission. So both the fundamental principles and most recent advances in solid state physics are explained in a class-tested tutorial style, with end-of-chapter exercises for review and reinforcement of key concepts and calculations.