Electron Correlation in Molecules

Electron Correlation in Molecules

Author: S. Wilson

Publisher: Courier Corporation

Published: 2007-05-11

Total Pages: 305

ISBN-13: 0486458792

DOWNLOAD EBOOK

This text addresses one of theoretical chemistry's central problems. Topics include molecular electronic structure, independent electron models, electron correlation, the linked diagram theorem, and related topics. 1984 edition.


Electron Correlation in Molecules and Condensed Phases

Electron Correlation in Molecules and Condensed Phases

Author: Norman H. March

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 404

ISBN-13: 148991370X

DOWNLOAD EBOOK

This book had its origins in lectures presented at EPFL, Lausanne, during two separate visits (the most recent being to IRRMA). The author is most grateful to Professors A. Baldereschi, R. Car, and A. Quattropani for making these visits possible, and for the splendidly stimulating environment provided. Professors S. Baroni and R. Resta also influenced considerably the presentation of material by constructive help and comments. Most importantly, Chapters 4 and 5 were originally prepared for a review article by Professor G. Senatore, then at Pavia and now in Trieste, and myself for Reviews of Modem Physics (1994). In the 'course of this collaboration, he has taught me a great deal, especially about quantum Monte Carlo procedures, and Chapter 5 is based directly on this review article. Also in Chapter 4, my original draft on Gutzwiller's method has been transformed by his deeper understanding; again this is reflected directly in Chapter 4; especially in the earlier sections. In addition to the above background, it is relevant here to point out that, as a backcloth for the present, largely "state of the art," account, there are two highly relevant earlier books: The Many-body Problem in Quantum Mechanics with W.


Electron Correlations in Molecules and Solids

Electron Correlations in Molecules and Solids

Author: Peter Fulde

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 492

ISBN-13: 3642578098

DOWNLOAD EBOOK

Dieser Titel verbindet die Festkörpertheorie mit der Quantenchemie. Neue Konzepte der Vielteilchen-Verarbeitung und Korrelations-Effekte, normale quantenchemische Verfahren mit Projektionstechniken, Greensche Funktionen und Monte-Carlo-Methoden werden erarbeitet. Anwendungsbereiche der Molekültheorie, von Halbleitern, supraleitender high-Tc-Materialien, etc., werden vorgestellt.


Electron Correlation in Molecules

Electron Correlation in Molecules

Author: S. Wilson

Publisher: Courier Corporation

Published: 2014-07-01

Total Pages: 305

ISBN-13: 0486150224

DOWNLOAD EBOOK

Electron correlation effects are of vital significance to the calculation of potential energy curves and surfaces, the study of molecular excitation processes, and in the theory of electron-molecule scattering. This text describes methods for addressing one of theoretical chemistry's central problems, the study of electron correlation effects in molecules. Although the energy associated with electron correlation is a small fraction of the total energy of an atom or molecule, it is of the same order of magnitude as most energies of chemical interest. If the solution of quantum mechanical equations from first principles is to provide an accurate quantitative prediction, reliable techniques for the theoretical determination of the effect of electron correlation on molecular properties are therefore important. To that end, this text explores molecular electronic structure, independent electron models, electron correlation, the linked diagram theorem, group theoretical aspects, the algebraic approximation, and truncation of expansions for expectation values.


Methods in Computational Molecular Physics

Methods in Computational Molecular Physics

Author: Geerd H.F. Diercksen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 367

ISBN-13: 9400972008

DOWNLOAD EBOOK

This NATO Advanced Study Institute was concerned with modern ab initio methods for the determination of the electronic structure of molecules. Recent years have seen considerable progress in computer technology and computer science and these developments have had a very significant influence on computational molecular physics. Progress in computer technology has led to increasingly larger and faster systems as well as powerful minicomputers. Simultaneous research in computer science has explored new methods for the optimal use of these resources. To a large extent develop ments in computer technology, computer science and computational molecular physics have been mutually dependent. The availability of new computational resources, particularly minicomputers and, more recently, vector processors, has stimulat'ed a great deal of research in molecular physics. Well established techniques have been reformulated to make more efficient use of the new computer technology and algorithms which were previously computationally intractable have now been successfully implemented. This research has given a new and exciting insight into molecular structure and molecular processes by enabling smaller systems to be studied in greater detail and larger systems to be studied for the first time.


Explicitly Correlated Wave Functions in Chemistry and Physics

Explicitly Correlated Wave Functions in Chemistry and Physics

Author: J. Rychlewski

Publisher: Springer Science & Business Media

Published: 2003-11-30

Total Pages: 588

ISBN-13: 9781402016745

DOWNLOAD EBOOK

Explicitly Correlated Wave Functions in Chemistry and Physics is the first book devoted entirely to explicitly correlated wave functions and their theory and applications in chemistry and molecular and atomic physics. Explicitly correlated wave functions are functions that depend explicitly on interelectronic distance. The book covers a wide range of methods based on explicitly correlated functions written by leaders in the field, including Kutzelnigg, Jeziorski, Szalewicz, Klopper and Noga. The book begins with a chapter on the theory of electron correlation and then the following three chapters describe different types of functions that can be used to solve the electronic Schrödinger equation for atoms and molecules. The book goes on to discuss the effects that go beyond the Born-Oppenheimer approximation, theory of relativistic effects, solution of the Dirac-Colomb equation, and relativistic correction using ECG functions. The last part of the book reviews applications of EC functions to calculate atomic and molecular properties and to study positronic systems, resonance states of atoms and nuclear dynamics of the hydrogen molecular ion.


Modern Quantum Chemistry

Modern Quantum Chemistry

Author: Attila Szabo

Publisher: Courier Corporation

Published: 2012-06-08

Total Pages: 484

ISBN-13: 0486134598

DOWNLOAD EBOOK

This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.


Attosecond Molecular Dynamics

Attosecond Molecular Dynamics

Author: Marc J J Vrakking

Publisher: Royal Society of Chemistry

Published: 2018-08-31

Total Pages: 512

ISBN-13: 1788015134

DOWNLOAD EBOOK

Attosecond science is a new and rapidly developing research area in which molecular dynamics are studied at the timescale of a few attoseconds. Within the past decade, attosecond pump–probe spectroscopy has emerged as a powerful experimental technique that permits electron dynamics to be followed on their natural timescales. With the development of this technology, physical chemists have been able to observe and control molecular dynamics on attosecond timescales. From these observations it has been suggested that attosecond to few-femtosecond timescale charge migration may induce what has been called “post-Born-Oppenheimer dynamics”, where the nuclei respond to rapidly time-dependent force fields resulting from transient localization of the electrons. These real-time observations have spurred exciting new advances in the theoretical work to both explain and predict these novel dynamics. This book presents an overview of current theoretical work relevant to attosecond science written by theoreticians who are presently at the forefront of its development. It is a valuable reference work for anyone working in the field of attosecond science as well as those studying the subject.


Fragmentation: Toward Accurate Calculations on Complex Molecular Systems

Fragmentation: Toward Accurate Calculations on Complex Molecular Systems

Author: Mark S. Gordon

Publisher: John Wiley & Sons

Published: 2017-10-23

Total Pages: 376

ISBN-13: 1119129249

DOWNLOAD EBOOK

Fragmentation: Toward Accurate Calculations on Complex Molecular Systems introduces the reader to the broad array of fragmentation and embedding methods that are currently available or under development to facilitate accurate calculations on large, complex systems such as proteins, polymers, liquids and nanoparticles. These methods work by subdividing a system into subunits, called fragments or subsystems or domains. Calculations are performed on each fragment and then the results are combined to predict properties for the whole system. Topics covered include: Fragmentation methods Embedding methods Explicitly correlated local electron correlation methods Fragment molecular orbital method Methods for treating large molecules This book is aimed at academic researchers who are interested in computational chemistry, computational biology, computational materials science and related fields, as well as graduate students in these fields.