Electron Beam Analysis of Materials

Electron Beam Analysis of Materials

Author: M. H. Loretto

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 218

ISBN-13: 9400955405

DOWNLOAD EBOOK

The examination of materials using electron beam techniques has developed continuously for over twenty years and there are now many different methods of extracting detailed structural and chemical information using electron beams. These techniques which include electron probe microanalysis, trans mission electron microscopy, Auger spectroscopy and scanning electron microscopy have, until recently, developed more or less independently of each other. Thus dedicated instruments designed to optimize the performance for a specific application have been available and correspondingly most of the available textbooks tend to have covered the theory and practice of an individual technique. There appears to be no doubt that dedicated instru ments taken together with the specialized textbooks will continue to be the appropriate approach for some problems. Nevertheless the underlying electron-specimen interactions are common to many techniques and in view of the fact that a range of hybrid instruments is now available it seems appropriate to provide a broad-based text for users of these electron beam facilities. The aim of the present book is therefore to provide, in a reasonably concise form, the material which will allow the practitioner of one or more of the individual techniques to appreciate and to make use of the type of information which can be obtained using other electron beam techniques.


Electron Microprobe Analysis and Scanning Electron Microscopy in Geology

Electron Microprobe Analysis and Scanning Electron Microscopy in Geology

Author: S. J. B. Reed

Publisher: Cambridge University Press

Published: 2005-08-25

Total Pages: 232

ISBN-13: 113944638X

DOWNLOAD EBOOK

Originally published in 2005, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms a comprehensive text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.


Scanning Electron Microscopy and X-Ray Microanalysis

Scanning Electron Microscopy and X-Ray Microanalysis

Author: Joseph Goldstein

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 679

ISBN-13: 1461332737

DOWNLOAD EBOOK

This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.


Compendium of Surface and Interface Analysis

Compendium of Surface and Interface Analysis

Author: The Surface Science Society of Japan

Publisher: Springer

Published: 2018-02-19

Total Pages: 807

ISBN-13: 9811061564

DOWNLOAD EBOOK

This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.


Electron Probe Quantitation

Electron Probe Quantitation

Author: K.F.J. Heinrich

Publisher: Springer Science & Business Media

Published: 1991-06-30

Total Pages: 412

ISBN-13: 0306438240

DOWNLOAD EBOOK

In 1968, the National Bureau of Standards (NBS) published Special Publication 298 "Quantitative Electron Probe Microanalysis," which contained proceedings of a seminar held on the subject at NBS in the summer of 1967. This publication received wide interest that continued through the years far beyond expectations. The present volume, also the result of a gathering of international experts, in 1988, at NBS (now the National Institute of Standards and Technology, NIST), is intended to fulfill the same purpose. After years of substantial agreement on the procedures of analysis and data evaluation, several sharply differentiated approaches have developed. These are described in this publi cation with all the details required for practical application. Neither the editors nor NIST wish to endorse any single approach. Rather, we hope that their exposition will stimulate the dialogue which is a prerequisite for technical progress. Additionally, it is expected that those active in research in electron probe microanalysis will appreciate more clearly the areas in which further investigations are warranted.


Scanning Electron Microscopy

Scanning Electron Microscopy

Author: Ludwig Reimer

Publisher: Springer

Published: 2013-11-11

Total Pages: 538

ISBN-13: 3540389679

DOWNLOAD EBOOK

Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.


Practical Scanning Electron Microscopy

Practical Scanning Electron Microscopy

Author: Joseph Goldstein

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 598

ISBN-13: 1461344220

DOWNLOAD EBOOK

In the spring of 1963, a well-known research institute made a market survey to assess how many scanning electron microscopes might be sold in the United States. They predicted that three to five might be sold in the first year a commercial SEM was available, and that ten instruments would saturate the marketplace. In 1964, the Cambridge Instruments Stereoscan was introduced into the United States and, in the following decade, over 1200 scanning electron microscopes were sold in the U. S. alone, representing an investment conservatively estimated at $50,000- $100,000 each. Why were the market surveyers wrongil Perhaps because they asked the wrong persons, such as electron microscopists who were using the highly developed transmission electron microscopes of the day, with resolutions from 5-10 A. These scientists could see little application for a microscope that was useful for looking at surfaces with a resolution of only (then) about 200 A. Since that time, many scientists have learned to appreciate that information content in an image may be of more importance than resolution per se. The SEM, with its large depth of field and easily that often require little or no sample prepara interpreted images of samples tion for viewing, is capable of providing significant information about rough samples at magnifications ranging from 50 X to 100,000 X. This range overlaps considerably with the light microscope at the low end, and with the electron microscope at the high end.


Microprobe Techniques in the Earth Sciences

Microprobe Techniques in the Earth Sciences

Author: Philip J. Potts

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 430

ISBN-13: 1461520533

DOWNLOAD EBOOK

30% discount for members of The Mineralogical Society of Britain and Ireland This text covers the range of microanalytical techniques available for the analysis of geological samples, principally in research applications. Each chapter is written in a clear, informative style and has a tutorial element, designed to introduce each technique for the beginning and experienced researcher alike.