Electromagnetic Scattering of Dense Media with Application to Active and Passive Microwave Remote Sensing of Terrestrial Snow

Electromagnetic Scattering of Dense Media with Application to Active and Passive Microwave Remote Sensing of Terrestrial Snow

Author: Wenmo Chang

Publisher:

Published: 2014

Total Pages: 152

ISBN-13:

DOWNLOAD EBOOK

It is of great importance to estimate the amount and the variation of water storage in the form of seasonal snowpack, in order to effectively monitor and manage the water resources all over the world. It is believed that significant temporal changes and spatial changes in local snowpack, regional snowpack and global snow are due to climate change. The Snow Water Equivalent (SWE) is defined as the depth of some hypothetical water which is melted instantaneously from an entire snowpack. Therefore the estimate of SWE is critical to the understanding of the water cycle, water resource management, prediction of climate change, flood forecasting, etc. Microwave remote sensing has been used in estimating SWE for decades. As radar measurement, radiometric measurement, and ground measurement data abound in microwave remote sensing campaigns, it is important to connect the ground measurement to electrical measurement by developing accurate physical models for snow, as well as scattering models for random medium. In this dissertation, Dense Media Radiative Transfer (DMRT) is combined with Quasi-Crystalline Approximation (QCA) and bicontinuous model. The DMRT-QCA and DMRT-bicontinuous are applied to data analysis of recent multi-frequency backscattering coefficients measurements in SnowSAR and SnowScat campaigns respectively. Then DMRT-bicontinuous model is used to study both active and passive remote sensing in the NoSREx campaign. Backscattering enhancement effect is considered. Lastly, the QCA model and the bicontinuous model are compared in microwave scattering as well as the medium characterization. The parameter extraction of these two models from ground measurement are discussed.


Comprehensive Remote Sensing

Comprehensive Remote Sensing

Author: Shunlin Liang

Publisher: Elsevier

Published: 2017-11-08

Total Pages: 3183

ISBN-13: 0128032219

DOWNLOAD EBOOK

Comprehensive Remote Sensing, Nine Volume Set covers all aspects of the topic, with each volume edited by well-known scientists and contributed to by frontier researchers. It is a comprehensive resource that will benefit both students and researchers who want to further their understanding in this discipline. The field of remote sensing has quadrupled in size in the past two decades, and increasingly draws in individuals working in a diverse set of disciplines ranging from geographers, oceanographers, and meteorologists, to physicists and computer scientists. Researchers from a variety of backgrounds are now accessing remote sensing data, creating an urgent need for a one-stop reference work that can comprehensively document the development of remote sensing, from the basic principles, modeling and practical algorithms, to various applications. Fully comprehensive coverage of this rapidly growing discipline, giving readers a detailed overview of all aspects of Remote Sensing principles and applications Contains ‘Layered content’, with each article beginning with the basics and then moving on to more complex concepts Ideal for advanced undergraduates and academic researchers Includes case studies that illustrate the practical application of remote sensing principles, further enhancing understanding


Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing

Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing

Author: Ya-Qiu Jin

Publisher: Springer Science & Business Media

Published: 2006-07-10

Total Pages: 393

ISBN-13: 140204030X

DOWNLOAD EBOOK

Advances in space-borne remote sensing have significantly changed the mankind viewpoint how to observe our own Earth planet. Great amount of remote sensing data and images presents new resources to quantitatively describe and monitor our Earth environment, atmosphere, oceanic and land surfaces. In remote sensing, electromagnetic (EM) scattering, emission and wave propagation, as interaction with the Earth environment, lay the physical basis for understanding and extracting geoscientific information. Study of electromagnetic waves with remote sensing application has become an active and interdisciplinary area. This book presents some new progress on the theoretical and numerical approaches for information retrieval of the remote sensing via EM scattering and emission. We begin in Chapter 1 with the vector radiative transfer (VRT) theory for inhomogeneous scatter media. The VRT takes account of multiple scattering, emission and propagation of random scatter media, and quantitatively leads to insights of elucidating and understanding EM wave-terrain surface interaction. Meanwhile, it is extensively applicable to carrying out data interpretation and validation, and to solving the inverse problem, e.g. iteratively, physically or statistically. In Chapter 1, iterative solutions of multiple scattering and emission from inhomogeneous dense scatter media, and inhomogeneous non-spherical scatter media are discussed. Three-dimensional VRT equation (3D-VRT) for spatially inhomogeneous random scatter media for high resolution observation is also investigated. The polarimetric imagery of synthetic aperture radar (SAR) technology is one of most important advances in space-borne microwave remote sensing during recent decades.


Advanced Remote Sensing

Advanced Remote Sensing

Author: Shunlin Liang

Publisher: Academic Press

Published: 2019-11-23

Total Pages: 1010

ISBN-13: 0128165286

DOWNLOAD EBOOK

Advanced Remote Sensing: Terrestrial Information Extraction and Applications, Second Edition, is a thoroughly updated application-based reference that provides a single source on the mathematical concepts necessary for remote sensing data gathering and assimilation. It presents state-of-the-art techniques for estimating land surface variables from a variety of data types, including optical sensors like RADAR and LIDAR. The book provides scientists in a number of different fields, including geography, geophysics, geology, atmospheric science, environmental science, planetary science and ecology with access to critically-important data extraction techniques and their virtually unlimited applications. While rigorous enough for the most experienced of scientists, the techniques presented are well designed and integrated, making the book’s content intuitive and practical in its implementation. Provides a comprehensive overview of many practical methods and algorithms Offers descriptions of the principles and procedures of the state-of-the-art in remote sensing Includes real-world case studies and end-of-chapter exercises Contains thoroughly revised chapters, newly developed applications and updated examples


Electromagnetic Scattering: A Remote Sensing Perspective

Electromagnetic Scattering: A Remote Sensing Perspective

Author: Yang Du

Publisher: World Scientific

Published: 2017-03-08

Total Pages: 410

ISBN-13: 9813209984

DOWNLOAD EBOOK

Remote sensing is a fast-growing field with many important applications as demonstrated in the numerous scientific missions of the Earth Observation System (EOS) worldwide. Given the inter-disciplinary nature of remote sensing technologies, the fulfillment of these scientific goals calls for, among other things, a fundamental understanding of the complex interaction between electromagnetic waves and the targets of interest.Using a systematic treatment, Electromagnetic Scattering: A Remote Sensing Perspective presents some of the recently advanced methods in electromagnetic scattering, as well as updates on the current progress on several important aspects of such an interaction. The book covers topics including scattering from random rough surfaces of both terranean and oceanic natures, scattering from typical man-made targets or important canonical constituents of natural scenes, such as a dielectric finite cylinder or dielectric thin disk, the characterization of a natural scene as a whole represented as a random medium, and the extraction of target features with a polarimetric radar.


Electromagnetic Scattering Modelling for Quantitative Remote Sensing

Electromagnetic Scattering Modelling for Quantitative Remote Sensing

Author: Ya-Qiu Jin

Publisher: World Scientific

Published: 1993

Total Pages: 356

ISBN-13: 9789810216481

DOWNLOAD EBOOK

Advances during the last two decades in radio electronics, space science and computers have turned remote sensing technology into one of the most effective tools for global exploration and environmental monitoring. This book is a comprehensive account of the theoretical models and techniques required for a full interpretation of the rich images and data that remote sensing can provide. Starting with the basics of vector radiative transfer and scattering theory, the book goes on to develop quantitative methods involving most comprehensive models of discrete scatters, continuous random media and randomly rough surfaces. References are constantly made to real-world parameters and models involved in the probing of different types of geographical terrain. The book is intended as an introductory graduate text and a research reference. It assumes a reasonable foundation in electromagnetism and common techniques in mathematical physics.


Scattering of Electromagnetic Waves

Scattering of Electromagnetic Waves

Author: Leung Tsang

Publisher: John Wiley & Sons

Published: 2004-04-07

Total Pages: 432

ISBN-13: 0471463795

DOWNLOAD EBOOK

A timely and authoritative guide to the state of the art of wave scattering Scattering of Electromagnetic Waves offers in three volumes a complete and up-to-date treatment of wave scattering by random discrete scatterers and rough surfaces. Written by leading scientists who have made important contributions to wave scattering over three decades, this new work explains the principles, methods, and applications of this rapidly expanding, interdisciplinary field. It covers both introductory and advanced material and provides students and researchers in remote sensing as well as imaging, optics, and electromagnetic theory with a one-stop reference to a wealth of current research results. Plus, Scattering of Electromagnetic Waves contains detailed discussions of both analytical and numerical methods, including cutting-edge techniques for the recovery of earth/land parametric information. The three volumes are entitled respectively Theories and Applications, Numerical Simulation, and Advanced Topics. In the third volume, Advanced Topics, Leung Tsang (University of Washington) and Jin Au Kong (MIT), cover: * Two-dimensional random rough surface scattering * Kirchhoff and related methods for rough surface scattering * Analytic theory of volume scattering based on cascading of layers * Analytic wave theory for medium with permittivity fluctuations * Multiple scattering theory for discrete scatterers * Quasicrystalline approximation in dense media scattering * Dense media scattering * Backscattering enhancement