Electromagnetic Scattering Modelling For Quantitative Remote Sensing

Electromagnetic Scattering Modelling For Quantitative Remote Sensing

Author: Ya-qiu Jin

Publisher: World Scientific

Published: 1994-01-18

Total Pages: 356

ISBN-13: 9814502413

DOWNLOAD EBOOK

Advances during the last two decades in radio electronics, space science and computers have turned remote sensing technology into one of the most effective tools for global exploration and environmental monitoring. This book is a comprehensive account of the theoretical models and techniques required for a full interpretation of the rich images and data that remote sensing can provide. Starting with the basics of vector radiative transfer and scattering theory, the book goes on to develop quantitative methods involving most comprehensive models of discrete scatters, continuous random media and randomly rough surfaces. References are constantly made to real-world parameters and models involved in the probing of different types of geographical terrain. The book is intended as an introductory graduate text and a research reference. It assumes a reasonable foundation in electromagnetism and common techniques in mathematical physics.


Electromagnetic Scattering Modelling for Quantitative Remote Sensing

Electromagnetic Scattering Modelling for Quantitative Remote Sensing

Author: Ya-Qiu Jin

Publisher: World Scientific

Published: 1993

Total Pages: 356

ISBN-13: 9789810216481

DOWNLOAD EBOOK

Advances during the last two decades in radio electronics, space science and computers have turned remote sensing technology into one of the most effective tools for global exploration and environmental monitoring. This book is a comprehensive account of the theoretical models and techniques required for a full interpretation of the rich images and data that remote sensing can provide. Starting with the basics of vector radiative transfer and scattering theory, the book goes on to develop quantitative methods involving most comprehensive models of discrete scatters, continuous random media and randomly rough surfaces. References are constantly made to real-world parameters and models involved in the probing of different types of geographical terrain. The book is intended as an introductory graduate text and a research reference. It assumes a reasonable foundation in electromagnetism and common techniques in mathematical physics.


Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing

Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing

Author: Ya-Qiu Jin

Publisher: Springer Science & Business Media

Published: 2006-07-10

Total Pages: 393

ISBN-13: 140204030X

DOWNLOAD EBOOK

Advances in space-borne remote sensing have significantly changed the mankind viewpoint how to observe our own Earth planet. Great amount of remote sensing data and images presents new resources to quantitatively describe and monitor our Earth environment, atmosphere, oceanic and land surfaces. In remote sensing, electromagnetic (EM) scattering, emission and wave propagation, as interaction with the Earth environment, lay the physical basis for understanding and extracting geoscientific information. Study of electromagnetic waves with remote sensing application has become an active and interdisciplinary area. This book presents some new progress on the theoretical and numerical approaches for information retrieval of the remote sensing via EM scattering and emission. We begin in Chapter 1 with the vector radiative transfer (VRT) theory for inhomogeneous scatter media. The VRT takes account of multiple scattering, emission and propagation of random scatter media, and quantitatively leads to insights of elucidating and understanding EM wave-terrain surface interaction. Meanwhile, it is extensively applicable to carrying out data interpretation and validation, and to solving the inverse problem, e.g. iteratively, physically or statistically. In Chapter 1, iterative solutions of multiple scattering and emission from inhomogeneous dense scatter media, and inhomogeneous non-spherical scatter media are discussed. Three-dimensional VRT equation (3D-VRT) for spatially inhomogeneous random scatter media for high resolution observation is also investigated. The polarimetric imagery of synthetic aperture radar (SAR) technology is one of most important advances in space-borne microwave remote sensing during recent decades.


Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing

Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing

Author: Ya-Qiu Jin

Publisher: Springer Science & Business Media

Published: 2006

Total Pages: 400

ISBN-13: 9781402040290

DOWNLOAD EBOOK

Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing presents some new progress on the theoretical and numerical approaches for information retrieval of the remote sensing via electromagnetic scattering and emission. It covers the vector radiative transfer theory for inhomogeneous scatter media, polarimetric scattering theory for the synthetic aperture radar (SAR) imagery and some innovative applications, new approach and data validation for current space-borne remote sensing programs, fast computational method and numerical simulation for bistatic scattering of randomly rough surface with a target presence, especially at low grazing angle. Some inverse problems in radiative transfer and inverse scattering are also discussed. Novel electromagnetics of complex media are also presented. Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing is intended as a textbook for graduate students and a reference book for scientists to see the most recent progress in the author’s research laboratory.


Polarimetric Scattering and SAR Information Retrieval

Polarimetric Scattering and SAR Information Retrieval

Author: Ya-Qiu Jin

Publisher: John Wiley & Sons

Published: 2013-03-29

Total Pages: 389

ISBN-13: 1118188160

DOWNLOAD EBOOK

Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative approaches for remote sensing, such as the analysis of the Mueller matrix solution of random media, mono-static and bistatic SAR image simulation. It also covers new parameters for unsupervised surface classification, DEM inversion, change detection from multi-temporal SAR images, reconstruction of building objects from multi-aspect SAR images, and polarimetric pulse echoes from multi-layering scatter media. Structured to encourage methodical learning, earlier chapters cover core material, whilst later sections involve more advanced new topics which are important for researchers. The final chapter completes the book as a reference by covering SAR interferometry, a core topic in the remote sensing community. Features theoretical scattering models and SAR data analysis techniques Explains the simulation of SAR images for mono- and bi-static radars, covering both qualitative and quantitative information retrieval Chapter topics include: theoretical scattering models; SAR data analysis and processing techniques; and theoretical quantitative simulation reconstruction and inversion techniques Structured to enable both academic learning and independent study, laying down the foundations first of all before advancing to more complex topics Experienced author team presents mathematical derivations and figures so that they are easy for readers to understand Pitched at graduate-level students in electrical engineering, physics, earth and space sciences, as well as researchers MATLAB code available for readers to run their own routines An invaluable reference for research scientists, engineers and scientists working on polarimetric SAR hardware and software, Application developers of SAR and polarimetric SAR, remote sensing specialists working with SAR data – using ESA.


Scattering of Electromagnetic Waves

Scattering of Electromagnetic Waves

Author: Leung Tsang

Publisher: John Wiley & Sons

Published: 2004-04-07

Total Pages: 732

ISBN-13: 0471463787

DOWNLOAD EBOOK

A timely and authoritative guide to the state of the art of wave scattering Scattering of Electromagnetic Waves offers in three volumes a complete and up-to-date treatment of wave scattering by random discrete scatterers and rough surfaces. Written by leading scientists who have made important contributions to wave scattering over three decades, this new work explains the principles, methods, and applications of this rapidly expanding, interdisciplinary field. It covers both introductory and advanced material and provides students and researchers in remote sensing as well as imaging, optics, and electromagnetic theory with a one-stop reference to a wealth of current research results. Plus, Scattering of Electromagnetic Waves contains detailed discussions of both analytical and numerical methods, including cutting-edge techniques for the recovery of earth/land parametric information. The three volumes are entitled respectively Theories and Applications, Numerical Simulation, and Advanced Topics. In the second volume, Numerical Simulations, Leung Tsang (University of Washington) Jin Au Kong (MIT), Kung-Hau Ding (Air Force Research Lab), and Chi On Ao (MIT) cover: * Layered media simulations * Rough surface and volume scattering simulations * Dense media models and simulations * Electromagnetic scattering by discrete scatterers and a buried object * Scattering by vertical cylinders above a surface * Electromagnetic waves scattering by vegetation * Computational methods and programs used for performing various simulations


Remote Sensing of Environmental Changes in Cold Regions

Remote Sensing of Environmental Changes in Cold Regions

Author: Jinyang Du

Publisher: MDPI

Published: 2019-11-14

Total Pages: 210

ISBN-13: 3039215701

DOWNLOAD EBOOK

This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing.


Wave Propagation, Scattering And Emission In Complex Media

Wave Propagation, Scattering And Emission In Complex Media

Author: Ya-qiu Jin

Publisher: World Scientific

Published: 2005-01-26

Total Pages: 478

ISBN-13: 9814483117

DOWNLOAD EBOOK

This book contains review papers presented at the International Workshop on Wave Propagation, Scattering and Emission on Theory, Experiment, Simulation and Inversion (WPSE). The papers are of high quality, covering broad areas: a new mechanism of interaction of electromagnetic waves with complex media, remote sensing information, computational electromagnetics, etc. This book summarizes the most significant progress in wave propagation, encompassing theory, experiment, simulation, and inversion. It will also serve as a good reference for scientists in future research.List of Foreign Invited Speakers: Henry Bertoni (Brooklyn Polytechnic University), Lawrence Carin (Duke U), Al Chang (NASA, Goddard), Margaret Cheney (Rensselaer Polytech Institute), Weng Chew (U of Illinois at Urbana Champaign), Shane Cloude (AEL Consultants, UK), Adrian Fung (U of Texas at Arlington), Al Gasiewski (Environmental Tech Lab, NOAA), Martti Hallikainen (Helsinki U of Technology), Akira Ishimaru (U of Washington), Magdy Iskander (U of Hawaii), J A Kong (MIT), Roger Lang (George Washington U), Alex Maradudin (U of California at Irvine), Eric Michielssen (U of Illinois at Urbana Champaign), Eni Njoku (Caltech, Jet Propulsion Lab), Carey Rappaport (Northeastern U), Marc Saillard (Institut Fresnel), Kamal Sarabandi (U of Michigan), David R Smith (U of California at San Diego), Mitsuo Tateiba (Kyushu University), George Uslenghi (U of Illinois at Chicago), and Werner Wiesbeck (Karlsruhe U).


Multiple Scattering of Light by Particles

Multiple Scattering of Light by Particles

Author: Michael I. Mishchenko

Publisher: Cambridge University Press

Published: 2006-04-27

Total Pages: 520

ISBN-13: 9780521834902

DOWNLOAD EBOOK

This monograph on multiple scattering of light by small particles is an ideal resource for science professionals, engineers, and graduate students.


Quantitative Remote Sensing of Land Surfaces

Quantitative Remote Sensing of Land Surfaces

Author: Shunlin Liang

Publisher: John Wiley & Sons

Published: 2005-03-11

Total Pages: 562

ISBN-13: 0471723711

DOWNLOAD EBOOK

Processing the vast amounts of data on the Earth's land surface environment generated by NASA's and other international satellite programs is a significant challenge. Filling a gap between the theoretical, physically-based modelling and specific applications, this in-depth study presents practical quantitative algorithms for estimating various land surface variables from remotely sensed observations. A concise review of the basic principles of optical remote sensing as well as practical algorithms for estimating land surface variables quantitatively from remotely sensed observations. Emphasizes both the basic principles of optical remote sensing and practical algorithms for estimating land surface variables quantitatively from remotely sensed observations Presents the current physical understanding of remote sensing as a system with a focus on radiative transfer modelling of the atmosphere, canopy, soil and snow Gathers the state of the art quantitative algorithms for sensor calibration, atmospheric and topographic correction, estimation of a variety of biophysical and geoph ysical variables, and four-dimensional data assimilation