Electromagnetic Reverberation Chambers

Electromagnetic Reverberation Chambers

Author: Philippe Besnier

Publisher: John Wiley & Sons

Published: 2013-02-07

Total Pages: 299

ISBN-13: 1118602153

DOWNLOAD EBOOK

Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments. In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration procedures. Comparisons with other testing systems (TEM cells, anechoic chambers) are also discussed.


Electromagnetic Reverberation Chambers

Electromagnetic Reverberation Chambers

Author: Guillaume Andrieu

Publisher: SciTech Publishing

Published: 2020-12-04

Total Pages: 305

ISBN-13: 1785619314

DOWNLOAD EBOOK

This book offers state of the art information about a novel range of applications for electromagnetic reverberation chambers. It is written by international experts in electromagnetic theory, electromagnetic compatibility (EMC), and antenna design and measurement.


Anechoic and Reverberation Chambers

Anechoic and Reverberation Chambers

Author: Qian Xu

Publisher: John Wiley & Sons

Published: 2019-01-04

Total Pages: 400

ISBN-13: 1119361680

DOWNLOAD EBOOK

A comprehensive review of the recent advances in anechoic chamber and reverberation chamber designs and measurements Anechoic and Reverberation Chambers is a guide to the latest systematic solutions for designing anechoic chambers that rely on state-of-the-art computational electromagnetic algorithms. This essential resource contains a theoretical and practical understanding for electromagnetic compatibility and antenna testing. The solutions outlined optimise chamber performance in the structure, absorber layout and antenna positions whilst minimising the overall cost. The anechoic chamber designs are verified by measurement results from Microwave Vision Group that validate the accuracy of the solution. Anechoic and Reverberation Chambers fills this gap in the literature by providing a comprehensive reference to electromagnetic measurements, applications and over-the-air tests inside chambers. The expert contributors offer a summary of the latest developments in anechoic and reverberation chambers to help scientists and engineers apply the most recent technologies in the field. In addition, the book contains a comparison between reverberation and anechoic chambers and identifies their strengths and weaknesses. This important resource: • Provides a systematic solution for anechoic chamber design by using state-of-the-art computational electromagnetic algorithms • Examines both types of chamber in use: comparing and contrasting the advantages and disadvantages of each • Reviews typical over-the-air measurements and new applications in reverberation chambers • Offers a timely and complete reference written by authors working at the cutting edge of the technology • Contains helpful illustrations, photographs, practical examples and comparison between measurements and simulations Written for both academics and industrial engineers and designers, Anechoic and Reverberation Chambers explores the most recent advances in anechoic chamber and reverberation chamber designs and measurements.


Electromagnetic Fields in Cavities

Electromagnetic Fields in Cavities

Author: David A. Hill

Publisher: John Wiley & Sons

Published: 2009-10-27

Total Pages: 296

ISBN-13: 9780470495049

DOWNLOAD EBOOK

A thorough and rigorous analysis of electromagnetic fields in cavities This book offers a comprehensive analysis of electromagnetic fields in cavities of general shapes and properties. Part One covers classical deterministic methods to conclude resonant frequencies, modal fields, and cavity losses; quality factor; mode bandwidth; and the excitation of cavity fields from arbitrary current distributions for metal-wall cavities of simple shape. Part Two covers modern statistical methods to analyze electrically large cavities of complex shapes and properties. Electromagnetic Fields in Cavities combines rigorous solutions to Maxwell's equations with conservation of energy to solve for the statistics of many quantities of interest: penetration into cavities (and shielding effectiveness), field strengths far from and close to cavity walls, and power received by antennas within cavities. It includes all modes and shows you how to utilize fairly simple statistical formulae to apply to your particular problem, whether it's interference calculations, electromagnetic compatibility testing in reverberation chambers, measurement of shielding materials using multiple cavities, or efficiency of test antennas. Electromagnetic Fields in Cavities is a valuable resource for researchers, engineers, professors, and graduate students in electrical engineering.


Electromagnetic Time Reversal

Electromagnetic Time Reversal

Author: Farhad Rachidi

Publisher: John Wiley & Sons

Published: 2017-01-04

Total Pages: 302

ISBN-13: 1119142091

DOWNLOAD EBOOK

The aim of this book is to familiarize the reader with the concept of electromagnetic time reversal, and introduce up-to-date applications of the concept found in the areas of electromagnetic compatibility and power systems. It is original in its approach to describing propagation and transient issues in power networks and power line communication, and is the result of the three main editors' pioneering research in the area.


Electromagnetic Shielding

Electromagnetic Shielding

Author: Salvatore Celozzi

Publisher: John Wiley & Sons

Published: 2008-05-16

Total Pages: 385

ISBN-13: 0470268476

DOWNLOAD EBOOK

The definitive reference on electromagnetic shielding materials, configurations, approaches, and analyses This reference provides a comprehensive survey of options for the reduction of the electromagnetic field levels in prescribed areas. After an introduction and an overview of available materials, it discusses figures of merit for shielding configurations, the shielding effectiveness of stratified media, numerical methods for shielding analyses, apertures in planar metal screens, enclosures, and cable shielding. Up to date and comprehensive, Electromagnetic Shielding: Explores new and innovative techniques in electromagnetic shielding Presents a critical approach to electromagnetic shielding that highlights the limits of formulations based on plane-wave sources Analyzes aspects not normally considered in electromagnetic shielding, such as the effects of the content of the shielding enclosures Includes references at the end of each chapter to facilitate further study The last three chapters discuss frequency-selective shielding, shielding design procedures, and uncommon ways of shielding—areas ripe for further research. This is an authoritative, hands-on resource for practicing telecommunications and electrical engineers, as well as researchers in industry and academia who are involved in the design and analysis of electromagnetic shielding structures.


Handbook of Aerospace Electromagnetic Compatibility

Handbook of Aerospace Electromagnetic Compatibility

Author: Dr. Reinaldo J. Perez

Publisher: John Wiley & Sons

Published: 2018-11-30

Total Pages: 768

ISBN-13: 111908279X

DOWNLOAD EBOOK

A comprehensive resource that explores electromagnetic compatibility (EMC) for aerospace systems Handbook of Aerospace Electromagnetic Compatibility is a groundbreaking book on EMC for aerospace systems that addresses both aircraft and space vehicles. With contributions from an international panel of aerospace EMC experts, this important text deals with the testing of spacecraft components and subsystems, analysis of crosstalk and field coupling, aircraft communication systems, and much more. The text also includes information on lightning effects and testing, as well as guidance on design principles and techniques for lightning protection. The book offers an introduction to E3 models and techniques in aerospace systems and explores EMP effects on and technology for aerospace systems. Filled with the most up-to-date information, illustrative examples, descriptive figures, and helpful scenarios, Handbook of Aerospace Electromagnetic Compatibility is designed to be a practical information source. This vital guide to electromagnetic compatibility: • Provides information on a range of topics including grounding, coupling, test procedures, standards, and requirements • Offers discussions on standards for aerospace applications • Addresses aerospace EMC through the use of testing and theoretical approaches Written for EMC engineers and practitioners, Handbook of Aerospace Electromagnetic Compatibility is a critical text for understanding EMC for aerospace systems.


Wave Propagation and Scattering in Random Media

Wave Propagation and Scattering in Random Media

Author: Akira Ishimaru

Publisher: Elsevier

Published: 2013-06-11

Total Pages: 272

ISBN-13: 0323158323

DOWNLOAD EBOOK

Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner, as well as useful approximation techniques applicable to a variety of different situations. The emphasis is on single scattering theory and transport theory. The reader is introduced to the fundamental concepts and useful results of the statistical wave propagation theory. This volume is comprised of 13 chapters, organized around three themes: waves in random scatterers, waves in random continua, and rough surface scattering. The first part deals with the scattering and propagation of waves in a tenuous distribution of scatterers, using the single scattering theory and its slight extension to explain the fundamentals of wave fluctuations in random media without undue mathematical complexities. Many practical problems of wave propagation and scattering in the atmosphere, oceans, and other random media are discussed. The second part examines transport theory, also known as the theory of radiative transfer, and includes chapters on wave propagation in random particles, isotropic scattering, and the plane-parallel problem. This monograph is intended for engineers and scientists interested in optical, acoustic, and microwave propagation and scattering in atmospheres, oceans, and biological media.


Electromagnetism

Electromagnetism

Author: Tamer Becherrawy

Publisher: John Wiley & Sons

Published: 2013-05-21

Total Pages: 442

ISBN-13: 1118587774

DOWNLOAD EBOOK

This book deals with electromagnetic theory and its applications at the level of a senior-level undergraduate course for science and engineering. The basic concepts and mathematical analysis are clearly developed and the important applications are analyzed. Each chapter contains numerous problems ranging in difficulty from simple applications to challenging. The answers for the problems are given at the end of the book. Some chapters which open doors to more advanced topics, such as wave theory, special relativity, emission of radiation by charges and antennas, are included. The material of this book allows flexibility in the choice of the topics covered. Knowledge of basic calculus (vectors, differential equations and integration) and general physics is assumed. The required mathematical techniques are gradually introduced. After a detailed revision of time-independent phenomena in electrostatics and magnetism in vacuum, the electric and magnetic properties of matter are discussed. Induction, Maxwell equations and electromagnetic waves, their reflection, refraction, interference and diffraction are also studied in some detail. Four additional topics are introduced: guided waves, relativistic electrodynamics, particles in an electromagnetic field and emission of radiation. A useful appendix on mathematics, units and physical constants is included. Contents 1. Prologue. 2. Electrostatics in Vacuum. 3. Conductors and Currents. 4. Dielectrics. 5. Special Techniques and Approximation Methods. 6. Magnetic Field in Vacuum. 7. Magnetism in Matter. 8. Induction. 9. Maxwell’s Equations. 10. Electromagnetic Waves. 11. Reflection, Interference, Diffraction and Diffusion. 12. Guided Waves. 13. Special Relativity and Electrodynamics. 14. Motion of Charged Particles in an Electromagnetic Field. 15. Emission of Radiation.


Radome Electromagnetic Theory and Design

Radome Electromagnetic Theory and Design

Author: Reuven Shavit

Publisher: John Wiley & Sons

Published: 2018-04-09

Total Pages: 296

ISBN-13: 1119410827

DOWNLOAD EBOOK

em style="mso-bidi-font-style: normal;"Radome Electromagnetic Theory and Design explores the theoretical tools and methods required to design radomes that are fully transparent to the electromagnetic energy transmitted or received by the enclosed antenna. A radome is a weatherproof and camouflaged enclosure that protects the enclosed radar or communication antenna, and are typically used on a fixed or moving platform such as an aircraft, ship or missile. The author — a noted expert in the field — examines the theoretical methods that apply to all type of radomes: planar, conformal, airborne and ground based. The text offers a description of the various measurement methods that characterise the electrical parameters of a radome, and discusses their merits in terms of accuracy. This groundbreaking book brings together in one volume all the necessary theoretical tools to design radomes